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ABSTRACT /_

This report summarizes much of the work that has done in the field of stability

theory with regards to the generation of Liapunov functions. The emphasis of the

report has been to survey and discuss the work of American engineers and mathematicians

in this area. But since most of the work was motivated by Russian mathematicians

and engineers, this report also includes a sizable discussion of the Russian contri-

butions. Reference is also made to the contributions due to mathematicians in

England, Japan and Italy. Under separate cover, the writers of this report submit

a sizable llst of references in the stability field and a summary of the theorems

and definitions which are important in the analysis of stability problems. A _
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LIST OF SYMBOLS

(most symbols _ defined where they are used in the report and will not be

repeated here)

V = usually denotes a scalar function, or functional which is a Liapunov function

or a candidate for a Liapu_ov function.

li- II = usually denotes the Euclidean norm of an n-dimensional vector,

defined as •

1/2
x +.,. + .

t _ (a,b] means a _q t $ b.

t ¢ (a, b) means a < t < b.

a G A means that element a is a member of set A.,

A T =

A* =

=

En =

Cn =

transpose of matrix A_

conjugate transpose of matrix A_

time derivative of the vector function, x -- x(t)i.

Euclidean n-space.

The class of functions having continuous n-th order partial

vv

derlvat Ires. .:

gradient of the scaiar f_nction V.,
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WORK OF KRASOVSKII, MANC_ARIAN, CHANG, INGWERSON AND SZEGO

SUMMARY

This section considers two important theorems of Krasovskii and the

generalizations which were considered by others, based on Krasovskii's work.

We present the work of Mangasarian, the kinetic Liapunov function of

Chang, the modified Liapunov theory of Ingwerson and the "generating

V - {unction" of Szego. Also, we include a compendium of examples at

the end of the section.

INTRODUCTION

In 1954, Krasovskii published an important result concerning the

global stability of a system of differential equations. This result in

itself was not as significant as the work which Krasovskii motivated

throughout the "differential equation community". Krasovskii's theorem

dealt with autonomous differential equations whose right sides were con-

tinuously differentiable.

In 1957, Krasovskii considered nonautonomous systems with right sides

which were continuously differentiable and with large initial disturbances.

Chang, in 1961, introduced his kinetic Liapunov function which is a

Liapunov function of the first derivatives of the state variable. This

formulation had been anticipated by Krasovskii's work° The use of this

function leads to sufficient conditions for asymptotic stability in the

large for nonlinear, nonautonomous systems.

In 1963, Mangasarian extended Krasovskii's work to cover nonautonomous,

nondifferentiable cases. In this work, the properties of convex functions

were used in deter_ning stability requirements.
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Ingwerson's work, 1961, modified the original Liapunov stability

criterion. His method of generating Liapunov functions consisted of

solving a matrix equation in closed form, modifying the result, and then per-

forming a type of double integration. His method is well motivated,

can often be carried out analytically and often gives excellent results.

In 1962, Szeg_considered the stability of nonlinear autonomous

systems with the nonlinearity representable in polynomial form. Szeg_

considers "generating V - functions" of the form V(_) = :_XTA_x_,

where A is a symmetric matrix function of the state variable. The elements

of A, aij (xi, xj), can be computed in such a way as to obtain V of the wanted

form. Particular attention is given to studying limit cycles of systems.

KRASOVSKII'S WORK

references _,_ we have the following statement:From of Krasovskii 's

Theorem. This theorem considers a free, stationary, dynamic system

described by

=

f(0J=

where _ has continuous first partial derivatives.

to be the Jacobian matrix of it); thus, F

The0rem

Also, we define F = F_)

(i)

H) (i) Equations (i) describe a free, stationary., dynamic system,

(ii) ! has continuous first partial derivations,

A
(iii) E_ =E +_T _ -- E _ for any _ > 0 in a neighborhood

of _ = O,

C) then _ = O is asymptotically stable in the large°
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Proo_____f

The candidate which is chosen for a Liapunov function is V --fT --f"

The corresponding time derivative of V is

= _T f + fT _ = _ --X)T f + fT (F_x)

A

= fT_[T+_F)f--_fTF_ _ - _ f_ •

By hypothesis (li), we know that a Taylor's expansion of _T_ in some

neighborhood of _ = O gives

• 2

v - fTf //x// 0
be

It remains toAshow, that V is positive definite and tends to infinity

Let c be a constant vector, c _ O. The set of vectors

_C; O ___ =_ _---I _ is a ray connecting the origin with c.

Integrating along the ray, we have

n If1
fi_q) = _ c. _fi (=(c) _=< 0

j=I o 3 "_xj

Suppose that __f(c_)i is 0 for some c _ O. Then

n fl n

o -- cTf_) -- i_ffii cilia') = J _ cicj _fi(=(c-)--&xj

o i,j =I

do<

J 0
2

which is a contradiction. Hence V = _T_ is positive definite since ! =

if and only if _ = 2" Also, the above argument shows that

T !(q_x-) _ -- o_ with =i _- oO , for any fixed



-4-

vector x _ 0o This meansthat at least one componentof f tends to

in absolute value as //x// tends to _ ; this completes

the proof of Krasovskii's theorem.

In the above proof, a more general Liapunov function could be used;

such as,

V=fTA f,

where A is a symmetric matrix. The time derivative of this V is

V = f-T (A F + FTA_) f = - fT_B f ,

where B = - _F +FT A_) is positive definite.

Also, in reference _] , the statement and proof of Krasovskii's

theorem is given in slightly different form. We will repeat this in the

following paragraph.

Theorem

H) (i) _ in equation (I) has continuous first partials,

(il) _F has negative eigenvalues for all x,

C) X = _ is completely stable.

Proof

We take as a candidate for a Liapunov function, V = x T_X; thus, as

2

/Ix II _ =_ , V --D- o_ • The time derivative of V is

v = __zx _ Xz__ --fz_)_+_f_.

The scalar product of x with W___ is

_. x_) = xTf(x_) + fT (_)x + XT_T+ F)x

= _ + xT _z + _ __.

Thus,

_.x) - V -- XT(.FT+ F) x

A

=XTF x < O,



^
since F has negative eigenvalues for all x.

v / i1 _11 .

we then conclude that the gradient of

toward the origin.

order than //x//
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Because it can be shown that

=
II

II is always directed

Therefore, V is negative definite since V is of higher

and since _ = O° This proves that _ = O is a

completely stable equilibrium point.

In summary, we see that Krasovskii's Theorem is limited in application

because of the demand that _ have continuous first partials and that

equation (I) describes an autonomous system. But this theorem has influenced

the work of others; such as, Ingwerson's work which appears later in this

section, Schultz'sand Gibson's work which appears in the variable gradient

section of this report and Mangasarlan's work which will be the next topic

of discussion in this section. In the compendium of examples at the end of

this section we give some applications of the above theorems.

MANGASARIAN'S WORK

The main results of Mangasarian's work [6] are the sufficient conditions for

the (i) stability, (2) uniform asymptotic stability in the large and (3)

instability of the equilibrium point _ = O of the system of differential

equations:

= f(t, x_) (I)

f(t, O_ = _0.

The sufficient conditions are obtained by using the stability and

instability criteria of Liapunov and properties of concave and convex

th

functions. The system given by (i) is ann order nonlinear system

where 0 _ t < According to Massera E_, the stability
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criteria and the various modifications of Liapunov theory hold if _ is

piecewise continuous in (_, t) space. The discontinuities of _must lie on

sufficiently smoothmanifolds; and _ must be such that for any given to, t)

there corresponds at least one function of t, _ = _ (t, _o , to), defined,

continuous, and with piecewise continuous derivatives with respect to t

for all t _ to, which satisfies the equations in (i), except at the

points of discontinuities.

The results are presented in the form of concave and convex scalar

functions, such as,

_ = _T _ (t, x)

function _ (x_ in (2) depends on the n-dimensional vector _where the Before

"going on" with the stability problem, we will consider some of the pro-

perties of concave and convex functions. For simplicity, we will discuss

some of the results and properties of convex functions of scalar variables

as presented by Beckenbach in E8].

A real function f(x), defined in the interval a < x < b, is said to be

convex provided that for all x I and x2, with a < x I _ x2

satisfying 0 _ _ _ I, we have

(I-_) f (Xl)+_f(x2) _ f _(i-_)x I + _ x2_ "

A convex function is necessarily continuous for a _ x < b. Geometrically,

the condition of convexity is that each arc of the curve y = f(x) lies

nowhere above the chord joining the end points of the arc° If f+(x) exists

at each point of the interval, then a necessary and sufficient condition

that f(x) be convex is that f_(x) > 0 for a < x < b. If the strict

inequality in (3) holds throughout, we say that f(x) is strictly convex.

Similar definitions hold for concave functions. That is, f(x) is concave

if and only if _-f(x) _ is convex.
J

< b, and for all

(2)

(3)
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Wewill now state someother imporEant properties of convex functions

which will be useful in the interpretation of Mangasarian's theorems.

(_) If f(x) and g(x) are convex functions in the interval a < x

(il)

then
f(x) + g(x) and max _f(x), g(x)_ are convex over a

as is cf(x) if c >/ O.

The limit of a convergent sequence of convex functions is convex;

also, if it is finite, so is the upper envelope of a family of

convex functions.

(lil) A convex function has a right-hand and left-hand derivative at each

point of (a, b). The right-hand is greater than or equal to the

left-hand derivative and both are no__!tdecreasing functions. These

two derivatives at a point are equal except for a denumerable set

of points.

(iv)

(v)

In the segment of (a, b) outside the subinterval (Xl, x2) , the graph

lies nowhere below the line through _xi, f(xl) _ and Ix2, f(x2) _ .

If for fixed xI and x2 in (a, b) the sign of equality in (3) holds at

a single interior point of the subinterval (x i ,x2), then the sign

of equality holds throughout (xI , x2).

Some simple examples of convex functions are given below:

Ix-
g(x) = 2

consists of a succession of llne-segments0

(ill)For the g(x) in (ii), the function max Ix z, g(x)_

(iv) By using the derivative test, we can show that for x

is convex; its graph is V-shaped.

Ixl +IX-i i + Ix- 2 I is a continuous graph which

is convex.

> O,
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Wenow return to the scalar function of vector _ in (2). It is

assumedthat _ is defined over a convex region. A convex reKio _

is a set of points, n-vectors, such that for every pair of points

E1 and _2 in the set, the "line segment" _ ]_2 is contained in the set.

If for all vectors E1 and _2 in the convex region of definition of

_, the inequality

holds for 0 _ k _ i, then /_ is called a conve___xfunction.

_ is concave if the inequality sign in (4) is reversed.The function

For strictly convex (concave) functions the equality sign in (4) holds

only for _ = O, _ = i, or xI = x2. Convexity and concavity imply con-

tinuity in the interior of the convex region of definite but not necessarily

But if _ (_) is twice continuously differentiable, thendlfferentiabilityo

sufficient conditions for convexity, concavity, strict convexity and strict

concavity of

IXiIxj

_ are that the syn_netric Jacobian matrices,

, be positive semidefinite, negative semidefinite,

positive definite and negative definite_ respectively for all values of _ in

of definition ofregion i

Since the system in (i) _s in general a nonautonomous system, a potential

Liapunov function will also be a function of both t and _. The following

definitions [6] concerning definiteness of V(t, x_ do not assume that V is
J )

continuous and has continuous first partial derivatives. The scalar function

V(t, x_ is positive definite if for 0 _ t < =<_ , (i)

for x _ _0, (ii) V(t, _0) " O, and (iii) tim inf
t-_

x _ O. The function V(t, x) is negative definit e if for 0 __ t _ o_,

(i) V(t, x_ < 0 for _x _ O, (ii) V(t, O_ = O, and (iii) _im sup V(t,x)
t--_

(4)

<0
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for x # O. The function is said to have an infinitely small upper bound if, given

e > 0, there exists a _ > 0 such that I V l < E for all t >I O and

IIx II < _ When V has continuous first partials in t and x, we have along

the solutions of (i)

v(_,x_)= -_Tv--iv÷ __Xv --!T v__Xv+ __Xv
_t "_t

Mangasarian considers three lemmas, I, 2 and 3, which are used in proving

his main theorems i, 2 and 3, respectively. These lemmas are given below"

Lemma i. Let f(t, x_) be continuous in x at x = O for 0 _ t < _D

and let f(t, O_ - O__for 0 _-- t < oo If_xT _(t , x_ is a concave function

of x for 0 _---t < =_ , then _xT f(t, x_) _ O for 0 _ t < _ .

Lemma 2. Let f(t, x_ be continuous in x at x = _.0for 0 ___t < _ ,

let f(t, O) = 0 for 0 __ t < =-=and let_ _ _imsuPt--_ ¢_ I XT f(t, x_

If x T f(t, x_) is a strictly concave function of x for 0 _ t < _ and if

either (I) _Z_ _ < 0 for x _ 0, or (II) _ _ is strictly concave in x,

then _T _(t, x_) is negative definite.

Lemma 3.

f(t, O_ = _0 for 0 _ t < _, and let _ _ _ Lira inflet

t--_ oo

If x T f(t, x) is a strictly convex function of x for 0 ._ t _ oo

either (I) _ _ > 0 for x # _0,

then x T f(t, x_) is positive definite.

Let f(t, x_) be continuous in x at x = O for 0 _ t < _,

_ xTf(t' x)_

and if

or (II) _ _) is strictly convex in _x,

Also, Mangasarian makes use of the theorems of Liapunov andMassera. Theyare:
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Liapunov's Stability Theorem

If a positive definite scalar function V(t, x_) with continuous first

partials in t and _ exists for which V _ O, then the point _ = O is a

_table equilibrium point of system (i).

Massera's Theorem

If a scalar function V(t, x_) with continuous first partials in t and

exists which is positive definite, tends to infinity with p_ _ , has

an infinitely small upper bound, and is such that V(t, x) is negative definite,

then _ = O is a uniformly, asymptotically stable point in the large of

system (I).

Liapunov's Instability Theorem

If a function V(t, x) with continuous first partials in t and _ exists

which is positive definite, has an infinitely small upper bound and is su¢_

that V is positive definite, then _ = 0 is unstable.

We will now state the _ain theorems of Man$asarian, along with

appropriate notes about the proofs.

Theorem i (Stability)

Let !(t, x) be continuous in _ at _ = O for O _ t < _ and let

_(t, O_ = O for O _ t < o_ If _T _(t, x_) is a concave function of

for 0 _ t < _, then the point _ = O is a stable equilibrium point of

the system (i).

Notes About the Proof

A Liapunov function, V_, t) = _T _' is considered. Thus,

= 2_xT _ = 2_z_(t , x_. From Liapunov's Stability Theorem and the

hypotheses in this theorem, the conclusion follows.
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If f(t, O_ = O for 0 _--t < o_ and if the function f(t, x_) is a twice

continuously differential function of x for 0 _< t < _ and II_X II <

then the point x = _0 is a stable equilibrium point of (i) provided that

the matrix E_2xT. f(t, x0_ is negatlve semidefinite for 0 _ t < _ andxi-- xj-

Theorem 2 (Uniform Asymptotic Stability in the Large)

Let _(f, x_) be continuous in _ at _ =O for 0 _ t < o_

let f(t, O_ = O for 0 <-- t < and let _ _) -=Lira sup _xT _f(t, x).
t---_ oo

If _xT f(t, x_ is a strictly concave function of x for 0 <__ t < _ and if

either (I) _ _ < 0 for x _ O, or (II) _ _ is strictly concave in x,

then x = _0 is a uniformly, asymptotically stable point in the large of the system

given by equation (i).

Notes About the Proof

The Liapunov function given by V(t, x) _ _T _ is positive definite, tends to

infinity with II_I I , and has an infinitely small upper bound, The time

derivative V = 2 _T _ = 2 _T!(t, x_) is negative definite by Lemma 2. Thus,

the conclusion follows by Massera's Theorem.

Examples

-t

The equation _ _ -e x is such that x = 0 is not an asymptotically stable

point. From XT _(t, x_) we have the following for_(x):

_(x)- _im sup [xTf(t , x_)I
t--_ _

Thus, _ (x) goes not satisfy either (I) or (II).

=0.
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-t

)x

is an asymptotically stable point in the large, as shown by Theorem 2.

I tl_im sup - (I + _ ) x
2

-- X

case

, for which x = 0

In this

which satisfies both (I) and (II) in Theorem 2.

Corollary 2

Let f(t, O_ = O for 0 _ t < _ , let

_- tim sup Ix f(t, x_ and let f (t, x)
t--_ _l--T ' --

be a twice continuously differentiable function of x for 0 L__t < _

IIf the matrix _ xT f(t, is negative definite for 0 _ t <

xi

and I;xll < oO , and if either (1) _ _ < oo for x _ 0 ,

or (II) _ _ is twice continuously differentiable, and the

matrix r_ 2 _ ] is negative definite for //x// _ _ ,
L-_xi _xj

then the point x = o is a uniformly, asymptotically stable point in the large

of the system (i).

Theorem 3 (Instability)

Let _(t, x_ be continuous in _ at _ = O for o & t < oo

let f(t, 0_ = 0 for 0 _ t < _ and let /_ Lira inf _x_ f(t,x)_ •
- - t--_ _ L-T - -

If _T _(t, x) is a strictly convex function of _ for 0 _ t < o_ and if

either (I) _ _ > 0 for _ _ O, or (II) _ _ is strictly convex in _,

then _ = O is an unstable equilibrium point of the system (i).

Notes About the Proof

Consider the function V(t, x_) = _T_, which is positive definite and has an

infinitesimally small upper bound. By Lemma 3, V = 2 _xT _(t, x_) is positive

definite. The conclusion follows by Liapunov's Instability Theorem.
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Corollary 3

Let f(t, O_ = _O for O <_ t <
,let _ _= Jim inf qxTf(t , x__2,

t--_ _

and let f(t, x) be a twice continuously differentiable function of x for O <--_

-'L "_xi _xi J

t < o= and ll-_II< o= , andife_ther(1)_ (xO > O forx # O,or

(II) _ _ iS twice continuously differentiable, and the matrix _[___i _x ]
j'

is positive definite for 0 <---t <. oo , then x - 0 is an unstable

t

equilibrium point of (i).

Man_asarian's Theorem 2 V. 5. Krasovskii's Theorem

Theorem 2 differs with Krasovskii's work because of the different choices

for the Liapunov functions in the two theorems. The differences can be summa-

rized in the following way:

(a) Krasovskii's theorem is for autonomous cases while Theorem 2 is for non-

autonomous systems.

(b) Krasovskli requires that _ be dlfferentiable while Theorem 2 requires

that _ be only continuous at _ = O.

Examples of Mangasarian's work are given in the compendium at the end

of this section.

CHANG'S WORK

In reference E9] , Chang discusses a kinetic Liapunov function. This is

a Liapunov function of the first derivatives of the state variables. There-

fore, this idea is not new but is an extension of the Liapunov function used

2

in the proof of Krasovskli's theorem in which #_ # is used as the
i

w

function. In general, the technique consists of finding the sufficient con-

e
ditlons for the time derivative x to approach zero. As _ approaches zero,
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the system arrives at one of its equilibrium points _e" This method has the following

advantages:

(I) For different sets of steady-state inputs, the equilibrium points -_e

vary. In cases where the kinetic Liapunov function is independent of

-_e' the stability problem can be settled once and for allo

(2) The kinetic Liapunov function leads to linearization.

One main disadvantage is the severity of the resulting sufficient condi-

tion8 which are placed on the system by the kinetic Liapunov function.

Chang's stability analysis is applied to a continuous time dynamical

system defined by

x =f _, t) (1)

where _ is a continuous function of _ and t, having continuous finite first

partial derivatives of x.

The definition of the kinetic Liapunov functionK(x, __, t) is as follows:

(i) K_, x, t) is continuous in x, x, and t, positive definite in x and

is finite for finite // x // ; that is

o<=<(I1__11)_- K _., __,t) __ @(//__//),

where c< and e are nondecreasing functions of //_x// ,

0<. co)= _ co) = o, and_(/1_11_

(ii) The total time derivative _K/dt satisfles,

_ < - _ <I1__/1_< o,
d.I;

except at :_ = O, where /(0) = Oo

and

approaches infinity.

The inequalities (2) and (3) are to be

(2)

(3)

satisfied for all values of x.

Main Theorem

"A dynamical system always converges to one of its equilibrium points Xe
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if (i) there exists a kinetic Liapunov function, and (ii) for any given r > O,

there exists an m(r) > O, such that //x- -_e// >/ r for all .xeimplles that

/II/>
In the following proposition, Chang shows why the existence of the kinetic

Liapunov function is a rather stringent condition,

proposlt&on i. "A dynamical system having one or more permanent unstable

equilibrium points cannot have a kinetic Liapunov function."

This means that kinetic Liapunov functions do not exist for stable

equilibrium points of the system if that system has a permanent unstable

equilibrium point; that is, a point where f X_e , t) = 0 for all t and where

the system is unstable. The reason for this is that kinetic Liapunov functions

must exist for all x, but in the neighborhoods of unstable points they do not

exist.

Proposition 2. "For tlme-lnvarlant systems condition (ii) of the kinetic

at a finite number of isolated points of the state space."

The results of the main theorem ._A ...... _+_. 1 l=.a e_ eh_ fnllnwing

corollary:

Corollary I. "A dynamical system is uniformly asymptotically stable in the

large if there exists a kinetic Liapunov function and only one stable equilib-

rium point."

The next corollary gives one way of finding a kinetic Liapunov function

for a time-lnvariant system. The proof of this corollary will be presented since

it is an example of a kinetic Liapunov function.

Corollary, 2. "A tlme-invariant dynamical system having one stable equilibrium

point is asymptotically stable in the large if there exists a positive definite

symmetrical constant matrix _B such that
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_B +_BAT

is also positive definite for every x, where

F .Q
f!

= fi X_.

Proof

Let the candidate for a kinetic Liapunov function be --_TB x. From

equations (I) and (5) we have _ = - A x. Thus, the time derivative of

K=_ B

.. -=_T B _ + B x + B x

(4)

(s)

Both _B and _T-B + B A - _B must be Positive definite for B x to be a

kinetic Liapunov function. In case B is a constant, then _B = _0, and the

corollary is proyed.

It should be pointed out that for uniformly asymptotic stability in

the large the expression _ B + B A must be positive definite for the same

constant B and for all possible A's which are generated as _ varies°

Chang uses the following al_ebraic relations in his examples, which

are in the compendium at the end of this section°

(I) For arbitrary A there exists a symm etrical, positive definite B such

that AT B + B A is positive definite, if and only if all the eigen-

values of A are positive. The Matrix B is called an orientation of A.

(2) Let A_=Ao + f_ _I ' where _o and AI are constant matrices, and

L _< f_ U. A symmetrical, positive definite matrix B is an

orientation of A_ for all _, if and only if B is a common orients-

tion of b0th _o + L AI and A + U AI "
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(3) There exists a commonorientation B for matrices A and C if and only
-i

if there is a nonsingular transformation T such that both T A T and
-i

T C T are positive definite. The_B =_T _ "

IN_FERS ON' S WORK

Ingwerson published the main result of his thesis investigations _ ,

in reference _ , in 1961. This result was a method of generating Liapunov func-

tions by an integration technique, In conjunction with reference _ is an intense

discussion between Vogt and Ingwerson, in references _ and _ , regarding

the preciseness of certain definitional4 theorems. In reference _ ,

Rodden shows that Ingwerson's method of generating Liapunov functions is

amenable to computational machine procedures.

Summarizing, Ingwerson's method consists of solving a matrix equation in

closed form, modifying the result, and performing a type of double integra-

tion. This method is well motivated as we will see in the following para-

graphs; can often be carried out analytically, and often gives excellent

results. This method of construction imposes only continuity and uniqueness

conditions on the right-hand sides of the systems' differential equations.

In principle, Liapunov functions of piecewise linear systems can be con-

structed with this method. Under certain conditions, discontinuous systems

can be handled. In the next paragraphs we briefly present Ingwerson's

historical and theoretical motivation for the development of his method.

This material comes from reference _ .

Liapunov considered the nonlinear autonomous system, _ = _, where

_fi =_ . That is, the curl of vector _ vanishes identically.

9xj _x i
Because of this, the following line integral is uniquely integrable:

=-

0



Theorem [I_ .

f(0, t) = 0.
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The time derivative of V (_) is _-- ! T!_ , which is nonpositive. If V is

positive definite, then the system is stable° We have asymptotic stability

in the large if V_ oo as _H_ oo

for this is that the eigenvalues of the matrix with elements

or _fi be positive.

Liapunov's example given above is a special case of Krasovskii's

The system considered by Krasovskii is, _x = _(_, t), where

The matrix B(_, t) is made up of the elements _fi .

The theorem states that the system is asymptotically stable in the large

A condition

x i -_ xj

if the eigenvalues of the symmetric part of B --½ _T + B) are negative°

For the autonomous case. Krasovskii, in reference _ jused a Liapunov function

of the form V- f T -f" In this more general case, _, the positive definite

form, V = x Tx, is used° The derivative of this V is _ 2 XT f + f TX -

To show that V is negative definite the scalar product of _V ° x

is formed:

'_.._.V.x '='_ + XT(BT +B)._.

Rewriting this equation gives

V XTX) ½ "x = XT(BT + B) x

XTX

by hypothesis° Thus, V is negative definite.

< 0,

Liapunov's results for linear, autonomous differential equations are

both necessary and sufficient. The system of equations he considered is

x = B x,

where B is an _ _ constant matrix. The choice for a Liapunov

function is

(i)

V = x T A x, (2)



where A is another _ _ _ constant matrix.

of V is

=XT(_B TA
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The corresponding time derivative

+ AB) x= -XTC_ ,

where for asymptotic stability matrix C must be a positive definite,

symmetric matrix. Thus _ = O is asymptotically stable if and only if the

matrix A which satisfies

for the above C has positive eigenvalues. This condition may be relaxed

by allowing V to be negative semidefinite rather than negative definite.

Then only one of the eigenvalues of C need be different from zero. A suffi-

cient condition for the eigenvalues of A to be positive or zero is that

those of B have negative real parts.

Before presenting Ingeerson's table of A and C matrices, we will con-

sider a second order example of the above discussion. Define a second order

linear system by the following set of equations:

Let matrix C take the form

C = i

2a I a2

thus, matrix A is given by

= x2 ,

= - a2x I - alx 2 •

I

0 0

0 2a I

a 2 0

0 i

(3)

(4)

A -- I

2a I a2
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The corresponding Liapunov function and its derivative are

V _ _ T _ _ = i
2a I a2

2 2

(a 2 x I + x2 )

2

V = - x C x = - X2 .
T

a 2

For the general linear, autonomous case the matrix B is given by

B

- a n - an_ 1

0

- an_ 2 • . - aI

For systems up to fourth order, Ingwerson _ , gives a table for the

various A's and C's corresponding to equations (4) and (5)° This table

will now be reproduced; in each matrix A and C in the table there should

appear, an extra scalar multiplier similar to the one given above in the

second order case.

(5)

Table of Matrices A and C

2nd Order

AI=

a2 0

0 1

0 0

0 2a

A2=

2

a I + a2 aI

aI i

2ala 2 0

0 0

el-----



3rd Order

2
a3

AI=

C1 =

A3=
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a2a 3 0

2

a2a 3 ala 3 + a2 a3

0 a 3 a 2

0 0

0 0 0

0 0 2(ala 2 - a3)

A2=

C2=

ala 3

a3

a3

2
aI + a2

0 aI

0 0

0 2(ala 2 - a3)

0 0

2 2
ala 2 - a2a 3 + aI

2
aIa3 a2 ala 2 - a3

2 3 2

aI a2 aI + a3 aI

2

ala 2 - a3 aI aI

2a3 (ala2 - a3) 0 0

0 0 0

0 0 0

0

aI

0

0

0

C3=

4th Order
a

AI

2

a3a 4

2

a4a 3

2

= a2a3a 4 - ala 4

0

2

a4a 3

2 2
ala 4 + a3

2

a2a 3

2
a2a3a 4 - ala4

2

a2a 3

2 2

ala3 + a2 a3 - ala2a4-a3a 4

0

a3a 4

2

a3

2

a3a4 a3 a2a 3- ala 4

R2

CI =

= ala 2- a3

0

0

0

0

2

R3 = ala2a 3 - a3

0 0

0 0

0 0

0 0

2
- a1

0

0

0

2R3

a4,

C2

0

0

0

0

0 0

0 0

0 2R 3

0 0

0

0

0

.0



_2 =

A3=
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2

ala 4

ala3a4

a3a 4

0

ala3a 4

2

ala 3 + a4R 2

2 2

a3 + a I a4

ala 4

a3a 4

2 2

a3 + al a4

2

a ! a3 + a2a 3 - ala 4

ala 3

0

ala 4,

ala 3

a3

a4R 2

2

al a4

2

a I a4

2

a2R 2- ala 4 + aI a 3

2

al a2

ala 4

2

aI + a2

3

aI + a3

R 2

2

alala4

2

0 R2 a I a I

%

0

0

0

0

0 0

2R 3 0

0 0

0 0

0

0

0

0

C4 =

2a#R 3 o 0

0 o 0

0 O 0

0 O 0

0

0

0

0

A 4

a3R 3 + a4(a2R 2 -ala 4) a3(a2R2 - ala4) aiR3 + a4R 2 R3

2 2

a3(a2R2,, - ala4) (a2 - a4>R 2 + ala4(a I - a2) ala2R 2 a2R 2 - ala4i

2

air 3 + a4R 2 ala2R 2 aI R2 + ala 4 air 2

R3 a2R2 - ala 4 air 2 R2

InKwerson wanted a method of _eneratlng Liapunov functions which would

solve the linear stability problem exactly and which would give sufficient

conditions for the stability of nonlinear systems under small disturbances;

with the hope, that the conditions for stability under large deviations would

also be useful in applications, although the results would be very conserva-

tive. His method is based on the observation that the qua4ratic part of the
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Liapunov function must give stability information for the linearized equations

of motion of the system. Ingwerson also based some of the development given

below on the example of Liapunov, given above, and on Krasovskii's Theorem

and proof_ The outline given below is based on the material presented in

references [3] and _ .

The nonlinear autonomous system

is differentiated with respect to time to give

""x = B_) ,

where B_ is the Jacobian matrix of _. That is, the elements of B are

fi/_xj - The matrix equation

may be solved for a matrix A_ for a given choice of matrix C, as in the

linear resul_ of Liapunov. In the linear case A is a matrix with elements

of the form _ _2V . Ingwerson observed that if this were also

2 _x i _Xj

true for matrix A(x_, then a Liapunov function could be found by performing

two integrations. His reasoning being that for any procedure based on this

idea, the correct answers are obtained for the linear problemjas is desired

in any general method.

There are necessary conditions which must be fulfilled by the elements

of A_ if these elements are to be second partial derivatives of a scalar

function. First, the elements must be such that the "mixed partials" of V

are equal, assuming sufficient continuity restrictions on the partial

derivatives; this implies that A_ must be symmetric, which is the case.
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Second, the elements of A_ must be such that

,

Dx k = xj

again assuming sufficient continuity requirements. This condition is usually

not fulfilled in the matrices, A_, derived above. But the A_) obtained

does have the desirable feature that the Liapunov function derived from

A(O) is valid in the vicinity of the origin. This Liapunov function gives

stability information about the linear approximation of _ = _(x_) in the

vicinity of _ = O.

From the above "impasse" Ingwerson salvaged the following procedure.

He found, as one can see in the examples at the end of this section, that

good results could be obtained if the matrix A_ is obtained as above and

in each element aij (i # j) of A_) only the variables x i and xj are retained,

the other variables are replaced by zero. Thus, aij_) = aij(xi, xj). There-

fore, the gradient of the scalar function V is found from the matrix integra-

tion, which is an "elementwise" indefinite integration procedure, of

X

i

V__V = / A (xi, xj) d _ o

The resulting vector _V has curl zero and, hence, is the gradient of a

scalar function V. The line integration of ___V gives the scalar V. Then

V and V = _tV T _ (_ are checked for the properties of definiteness

or semidefinlteness as the case may be.

The table given by Ingwerson of the A and C matrices for linear systems

can be used for this nonlinear problem. From the table and the corresponding

B(x) matrix, a matrix A is chosen, except the constant elements in A are

A(@ = A(xi, xj),
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replaced by the corresponding variable elements obtained from the B - matrix.

But one should realize that there is much ingenuity required in the choice of

matrlx A and in deciding when it is feasible to choose a combination of the

A's, and thus a linear combination of corresponding '_iapunov functions", and

in determining when some of the elements in A_) should be modified.

In summary, the InKwerson method is, E3_:

(I) Obtain the matrix B_) from the given system, _ = _; and choose

a symmetric C. Then "calculate" matrix A_) from BTA +A B = - C.

(2) Cross out the terms in A_ which violate aij = aji; and cross out

those terms in the element aij which violate aij = aij (x{, xj).

(3) Perform the integrations,

x

V_.V = _o' A (x) d x ,

and x

V = / V.._.V• d x

_.o

(4) Find V from the equation

 =V_XVT_f •

(5) Test V and V for the appropriate definiteness properties.

(In step I, In$werson's table of "linear A-matrices" provides a useful first

approximation for the desired A(_'s if the constants aij are replaced by

the corresponding variables aij (xi, xj)-

SZEGO'S WORK

In reference _ Szego developed a procedure similar to the other

techniques presented in this section. The systems whose stability is to
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be investigated by this technique are nonlinear autonomoussystems with

nonlinearities representable in polynominal form. The V-functions used

in the analysis are derived from the particular system under investigation

by a procedure based upon a class of functions that Szeg_ calls "the class

of generating V-functions." Such a generating V-function has the form

V_ _ _ TA_ _, where A_> _ laij (xi, xj)J , aij = aji

The

coefficients aij are determined such that V possesses the desired properties

specified in Szego's Stability Theorems°

The system under investigation is

m

which is assumed to have only one equilibrium point, _ = Oo The nonlinearity,

_(x_, is representable in polynominal form. Szego's theorem on asymptotic

stability in the large is presented in the usual form. But for local

stability his theorem is stated in the following way:

"A sufficient condition that the solution _ = O of the system (I) is

locally stable is that there exists a positive definite scalar function

V = _ (x_ with continuous first partial derivatives, such that its total

time derivative with respect to the system (i) has the form

where _ (_) is a semidefinite function not identically equal to zero on any

nontrivial solution of (I), and g(x) is indefinite on a closed surface. In

particular assume that _ _ = 0 is a closed surface, or a family of

closed surfaces, and J (u) is such that g (O) = O and

g(u)/u > o ."

In this theorem the meaning of being indefinite on a closed surface

is: "A function defined by __ = i _) is indefinite on a closed

(I)

(2)
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surface if _ _ = 0 is a closed bounded surface and if the sign

of _ _ inside _(_) = 0 is different from the sign of

f _ = 0." This is the essence of the difference betweenoutside

Szego's Method and some of the other methods; that is, V is allowed to be

indefinite on a closed surface. This then leads to the possibility of

approximating the limit surface of system (i), if it exists.

With reference to this limit surface, we now briefly describe the

construction procedure used to obtain an approximation of this surface.

by W ffi_c that surface of the family V = _ which isWe denote

circumscribed to the suz'face _ _ = 0, and W = _m the inscribed surface.

every surface of the family W = _ _ such that V= Wc _ _cThen for

Ve will be semidefinite of a particular sign; and for every surface with

Vc _- _m, V¢will be semidefinite of opposite sign. The closed bounded

If_c =_m, then _ _ = 0 identifies exactly the boundary between stability

and instability. This boundary is a limit set of the system. If this

constitutes the only limit cycle for the system, then it will be stable and

the solutions will be bounded in the neighborhood of _ = O for Vc _ O. The

limit cycle will be unstable and some solutions will be unbounded if Vc _ O.

From the above discussion one is given a method of approximating limit cycles,

as will be demonstrated in the examples.

Sze_o's main aim is to investigate the stability of the solution _ =

so as to identify analytically the regions of stability or instability of the

solution x = 0 and the boundaries between them by using the Second Method of

Liapunov.

as follows:

The "generating V-function is a polynomial in Xl, .o. , xn represented

v(a)--xTA (m) x, (3)
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where the elements of A are of the form aij = aij (x_, x_)_and are not

dependent upon Xno The reason for the last restriction is that usually

limit cycles have at most two real intersections with the hyperplanes

x i = constant, i = I, 2, _o. , n-l. The unknown parameters aij are deter-

mined such that V possesses the desired properties. Since _) in (i) is

representable in polynominal form, then the coefficients aij, up to a constant

factor, satisfy simple algebraic equations.

From Szego's formulation of the method of generating V-functions, the

problem of the stability of system (i) is reduced to the investigation of

the properties of the solution of a matrix equation and the values of certain

constants. Let us consider system (1,) in the form:

where B is not generally known uniquely. The V-function is given by equation (3)

where the matrix A is symmetric and the aij elements are of the form

aij = aij (x_, xj). From equations (3) and (4) we get the time derivative

of V:

V =_T _T_ + _ _ + A? _ "

As pointed out in Szeg_'s Theorem, we want the form of V to be

where _ = _r _)_ is a definite scalar function such that _ _ K, _ _) is

a semidefinite scaler function not equal to zero on a trajectory of the system

(I), and K is a nonnegative constant.

then V becomes

= x r _ _ _) x XT_.C
L

If we assume that _) = _T -_ _ '

(a) - K _x.

(4)

(5)

(6)

(7)
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Thus, the problem of stability is reduced to the solution of the following

matrix equation for matrix A:

(8)

which is derived from equations (5) and (7) and from the particular form

of A which is required for system (I). For second and fourth order systems,

the solution of (8) is satisfactory for stability analysis.

For third order systems, Szego suggests the following V-function:

V'x _D XTX E + A_ x ,

F "-7

where A, D__,and E are symmetric matrices of the form, A - _|aij (xi, xj)]__

B = _bij (xi, xj)_ and E = L elj (xi, xj)_ From equation (7)and

and the total time derivative of (9), the problem of stability for the third -

(9)

order system is reduced to the computation of the 18 elements of the matrices A,

Dand E which satisfy the equation:

XT_(_BTD + D B) x XTE - + D x x T_T E + E_ B) +BTA + A B_X_ =

For a fifth - order system one can use the following V-function_

v=x, x x x,.+ . x + x,

where A, F, G and H are symmetric matrices and either D or E is

(ii)

symmetrical, and

A = Eaij (xi, xj)j

H = Lhij(xi, xj)_

D = Ldij(xi, xj)_ ,

These six matrices _st satisfy a matrix equation similar to equations (8)

and (I0).
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In summary,we give s list of several observations which c_mbe made

about the procedure.

(i) In solving the matrix equations in (8) and (i0) several simplifying

assumptions are usually madeand the final result is a modification

of the original proposed V-function. Examples of this procedure are

given at the end of the section.

(2) Similar V-functions can be constructed for every finite-order autonomous

system.

(3) This method of generating Liapunov functions uses the "geometric

meaning" of the functions and therefore gives a method to estimate

limit surfaces, if they exist.

(4) This s,amemethod for constructing Liapunov functions can also use the

approach of Krasovskii by introducing a V-function of the form

v =fT(_X) A (xi, xj)_f (@ , (12)

whose total time derivative contains the Jacobian matrix of the system (i)

in place of the B_) matrix° The advantage is that the Jacobian Matrix is

uniquely defined by the system while the B_) matrix is not uniquely defined.

(5) The disadvantage of this method is the "usually story", too much computation

is required for most systems.
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COMPENDIUM OF EXAMPLES

Linear Circuit

We apply Krasovskii's theorem to the following linear circuit

el = "4Tel+ 4 e2,

h2 " 2Zel- 6_,

where the Jacobian matrix is

_F(eO-- - 4K 4K

2K -6K

A

Thus, the F matrix becomes

A

F --F +ET-- -8K

6K

6K

-12K

A

where the elgenvalues of F are negative if _>0o

isasymptotically stable everywhere.

Therefore the circuit

Example 2, [57 Second Order_ Nonlinear System

We have a nonlinear system given by

_i = x2

_2 = - Kf(xl) - wx2

The candidate for a Liapunov function in this case is chosen to be of the form

where fl

2

v =!zA ! = all fl

= x2 and

2

+ 2a12 flf2 + a22 f2

f2 =- Kf(xl)-WX 2 • For

a positive definite V we must require that f(xl) = 0 implies that x I = O,



all > O, all a.z2 . - alp -
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> O. The corresponding V is

I dfl _ V dfz_V- _fl d-_ + _ dt _

__I + _f-i1_2]+_v I

where

_f___ El ÷ _f_ X_

Xl _ x2 ]J

__Lv
_fl " 2all fl + 2a12 f2,

___v
f2 = 2a12 fl + 2a22 f2,

_! = O, _fl = i, _f2 =- Kf'
;xI ;x--_ -_xz

Thus, the conditions for asymptotic stability are as follows:

if all = a12 > O, a22 =_a12, then

_>I, W _ > I , and

._w,_-2-2J_o'-_'_-_ .<_,<_'_w÷ _-_+_/<_'__ _'w-_

Example 3, [I] Second Order_ Nonlinear System

The system is described by

Xl = fl(Xl ) + f2 (x2)'

x2 = Xl + ax2'

fl(O) = f2(O) = O,

fl' f2 are differentlable.

Therefore,

^

F=
P

2 _(_l) 1 + f_ (_2)

I + f_ (x2) 2a
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To satisfy the hypotheses of Krasovskii's theorem, we let

(i)

(2)

>0

dfl

ix---- _ ___ <O for all xI.

for any _,

Example 4, _] Second Order _ Nonlinear

We have a second order system defined by

Xl = fl(Xl ) + gl (x2),

Thus,

A

F

_:2 = f2(Xl ) + g2 (x2)"

A

The characteristic equation for _F is

2

"A2 2 (f" + _" ),_ + 4 f' _:_' _'_' + f"

The real parts of the eigenvalues are negative if

' = f' for x _ 0(i) gl 2 -- --'

' + ' < 0 for x _ O.(2) fl g2

Therefore, the system will be completely stable if (I) and (2) hold.

The next three examples are systems whlch can not be analyzed by

Krasovskii's theorem but are applications of the more general theorems of

Mangasarlan. These examples are nonautonomous and have right-hand sides

which are not everywhere dlfferentiable.
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Second Order, Nonautonomous

In state variable notation, the defining equations are

Xl = x2 ,

x2 = - x I - b(t) x 2 - c(t) x23

The physical application of this equation may be interpreted as the move-

ment of a unit point mass under a unit spring force xI and under a nonlinear

damping force b (t)x I + c(t) x_ . The scalar function XT !(t, x_) which

is the test function in Mangasarian's Theorem is

This function is concave, but not strictly concave if b(t) >I 0 and

c(t) >10 • Kence, by Mangasarian's Theorem I, the equilibrium point

(Xl,X2) = (0, O) is stable.

Example 6, [6] Second Order, Autonomous

The system is defined by

- x I - XlX 2 , for x2 & i )
= 3

x I - XlX 2 , for x2 > I )

2

- x2 + x I , for x 2 _ I j: 2 2
x2 + x I x 2 , for x2 > i.

For this system we have _) = 2. Also, the test function, _T _) is

2 2

T ! _ = - x I -x 2 ,

which is strictly concave. Hence by Theorem 2 of Mangasarian, the equilibrium

point (0, O) is uniformly asymptotically stable in the large. Krasovskii's
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result can not be applied here because _ is nondifferentiable along the line (x I, i)

in phase space.

Example 7, E63 Nonautonomous Sys tern

The system is described by

2 2 2

+ XlX 2 ), xI + x2 _ i ,

2 2 2

- XlX2 ), x I + x 2 > i ,

x 2 =
I i + _sin t)(- x2 - x 2 x2)

2

(I + _sin t)(- x2 + xI x2)

2 2
, xI + x 2 _ i ,

2 2

, x I + x2 > I ,

where 0 < _ < 0.9 . For this example _(t, 2) = 2. Also, _(t, x_)

is discontinuous along the circle x 2 + x22 = i. However, the scalar function

2 2

_(t, x_)=- (l, _ sint)(xI +x 2)

is strictly concave in_ for 0 _ t < oo , and the

_imsup -(1,_sint)(x 1 +x 2) z -_ (x1 +x 2) < 0 ,
%-_-a I0

for _ _ O . Hence_ by Theorem 2 of Mangasarian, the point (O,O) is a

uniformly, asymptotically stable point in the large.
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Example 8, E9] Steady-State Condition - With Inputs

The system is defined by

2 2
Xl = x2 - axl (Xl + x2 ) + il(t) ,

2 2

x2 = " Xl - ax2 (Xl + x2) + i2(t) •

Assume that the inputs settle eventually down to constant inputs iI and i2 .

The problem is to determine if the system is uniformly asymptotically stable

in the large about its equilibrium point whe_ever that may beo

A

2
3ax I 2axlx 2 - i

2

2axlx 2 + I 3ax 2

The matrix

Choose the kinetic Liapunov function to be of the form K = x x = _ 2 + _ 2
-T -- i 2

Thus,

where

2

6 ax i 4axlx2

2

4 axlx 2 6ax 2

The matrix _T + A is positive definite except at (O,O) if a > O; thus, the

system is uniformly asymptotically stable in the large about its equilibrium

point.
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Example 9, [97 Systems with a Nonlinear Gain Element

Systems with nonlinear gain element can be described in state variable x

notation by the equation

_ = - A x - _ +I r(t) + gl;(t) + J-- --o -- f(xl) EO ....

For inputs in which the square bracketed term is constant, a steady state

equilibrium point -_e exists. We will consider the stabillty of this _e, which

is the equilibrium point of

= - A_o _ - _ f(xl) + constant.

Differentiating this equation gives

eo • / o

f (x1) Al ,

where _I is a matrix with b as its first column and zeros everywhere else.

l

U and L be the upper and lower bounds of f (Xl):

L & f' (Xl) e U.

From Chang's theoretical discussion, the general system will be uniformly

asymptotically stable in the large if a common orientation can be found for

%0 + L A1) and %0 +"_l)"

Let

First Order System

The defining equation is

=- ax- f(x) +r(t)

where r(t) _ constant, "sufficiently fast." The matrices _O and _i

are first order and equal(a) and (i), respectively. The sufficient condition

/
for uniformly asymptotic stability in the large is that (a + f (x)) > O.

This is also the necessary condition if the system is to be stable for every

Me-
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Second Order System

Consider the system

x I -- x 2 ,

x 2 =-ax 2 - f(xl) '

where L _ f'(xl) _ U. A common orientation exists for the

matrices

if

and

0 -i

U a

i) L > O, a > 0

and

ii) U < (a + _ L )2

Condition (i) is necessary for local stability, while conditions (ii) and (i)

are both sufficient for uniform asymptotic stability in the large.

In this case Chang can easily show that his kinetic Liapunov function is

too conservative. Assume f(O) = O. Consider

Xl

f ! x2)2
V = f(x) dx + 2 (ax I +

o

as a candidate for a Liapunov function. The time derivative is

= f(xl) Xl + (axl + x2)(axl + _2 )

= x2f(xl) + (ax I + x2)(ax 2 - ax 2 - f(xl) )

= - ax I f(xl).

Thus, V is a Liapunov function is a > 0 and xlf(Xl) > O, xI # 0 . These

conditions imply the conditions in (i), but, (ii) is no_._!tnecessary°
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The third order system is given by

B_) --

XI = X2

x2 -- X3

x3 -_ (xI

-39 -

Third Order System

3

0

0

-3(xI + cx2)2

+ cx 2) -- bx3)

0

2
-3c(x I + cx 2)

O

-b

This matrix B_ has the same form as the B in the linear case, but with

variable elements. The third-order matrix corresponding to _A2 in the table

under "Ingwerson's Work" is

2

3b(x I + cx 2)

2
(.x.) = 3(x 1 + cx 2)A

2
3(x I + cx 2)

2 cx2) 2b + 3c (xI +

0 b

0

b

I

WN_= 4c, +_A

......... _= ==-_= == _A_ for the linear case except certain constant elements

are replaced by variables.

Next, matrix_ (xi,xj) is obtained from A2 (x) by letting certain variables

vanish:

AIx i, xj) =

2

3bx I

3(x I + cx2)

0

2

3(x I + cx2)

2 3 2
b +3c -x2

b

0

b

i

Performing the integration

EE -- A2 (xi,xj) dx,
o
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gives

v_Xv--

3 3 3

bx I + i/c (xI + cx2) -- Xl/c

3 2

(xI + cx2) + b x2 + bx 3

bx 2 + x3

The Liapunov function V is found by evaluating the line integral of VV along

any path of integration:

x

- bx 4 4 4
V = _?V-d x = i

_ -- -%- + (Xl +4cCX21 X4cl +

+ b2 2
x 2 + bx2x 3 + x 2

2 3/2 .

When b > O, c > O, bc-i > O, then V > O and_V = O only when _ =O. The time

derivative of V is given by

2 2 2=___V Tx = - (bc-l)(3x + 3CXlX 2 + c x2 ) x 2

is negative semidefinite when b > O, c > O, and bc-I > O. In this particular

case, the conditions are also necessary for the asymptotic stability of the

system.

Example li D _ Nonlinear Compensation

The physical system considered here is an undamped second-order system

which is made asymptotically stable by regulating the gain of an amplifier.

The equations of motion in state-variable form are

Xl = x2 - X2o

= - - bl (x I - xlO )2 (x 2 - x20 ).
x2 _ (Xl xlO) j
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The terms XlO and x20 are time varying inputs which are held constant after some

time t I. Then for t > tl, the substitution, Yl = xI - xlO and Y2 = x2 - x20'

reduces the above equation to

Yl = Y2,

2
_2 -- bo Yl - b_! Yl Y2

J J

If these equations are asymptotically stable in the large, then the original

system is stable for all inputs.

The matrix B_ is

B

I

0

- bo 2bl yly 2
J J

2

-- b_l Y I
J

The first matrix in Ingwerson's table is used, that is

A

bo 2b I
t YlY2

J J

0

0 I

The matrix _(Yi' Yj) becomes

bo/J

A(yi, y0) =

thus, V V becomes

I

I °0 i

v_Xv

x

-- A (Yi' Yj) dx

bo Yl

J

Y2

Therefore, V and V become

Ibo 2 1 2 I
V = _ Yl + --2 Y2
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V = - bl y2 y2 .

T 1 2

If bo > 0, bI > 0 and J > 0, then V is positive definite and V is negative

semidefinite and the only trajectory of the system for which V is identically

zero is _ = O. Thus, the system is asymptotically stable in the large.

Example 12, _ Discontinuous System

The physical system is a linear second order switching system whose

actuating signal is switched positive or negative according to the sign of the

linear switching criterion x I + cx 2. The equations of motion are

E 1 = x 2 ,

2
x2 = - K_Zsgn (xI + cx2) - _)x I - 2D u) x2 .

From the theory of generalized functions, we know that the derivative of sgn x

is twice the Dirac delta function, _(X)o Thus, the Jacobian matrix of the

above system is

0 I

B(._= 2 2 2
_- 2xuo _ (xI + cx2) -2D_- 2xc_o _ (xI + cx2)

i

In this case Ingwerson considers a linear combination of the A-matrices from

'%is table", namely,_Al + A2 . The first row, first column element of
2

A_I + A 2 must be modified so that _ (x) does not occur. Thus,

from the modified_A I + A 2 we get the matrix A(x_, xj) in the

following form:

A(xi,xj} =

('4D_ 2 2+ 1 +H)_ + =_o <2=D_+ 1 +/4)0¢(Xl)

2 $ + cx2)2Dr 0+ 2Kc t/9 (xI

2]) Lz)+ 2Kc O.) Xl+ cx:
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Integration of this matrix gives _ in the form:

2 2 2 2

(4D + I +_)UJ x I + K OO(2cDGO+_) sgn x I + 2Do0x 2 + K tOsgn(x I + cx2)

2DOOx I + Kc _2sgn(xl + cx2) - Kc 0_2sgn cx 2 + (I +_)x 2

The time derivative of V is equal to__ T _ , which is a very complicated
. 2

expression. To simplify V, Ingwerson first let_ = 6_ c which

makes certain terms in V nonpositive. Also, it can be observed that the

(sgn Xl) and (sgn Cx2) terms in V complicate matters. These terms are

dropped without interfering with the integrability of V Vo

V = (4D 2 +i +_02c 2) [_+ D_DxIx 2 + K L_ 2(x I

Finally, we have

+ cx 2 ).

2 2 2

• sgn (x 1 + cx2) + (1 +_c ) x 2/2 ,

2 2 2 2

(4D + i + _ c) d.L) x 1 + 2 D _._x 2 + K _ sgn(x 1

2
2D_)x I + Kc(3.) sgn (xI + cx2) + (I + ) x2

+ cx2)

and

• . 3 2 2 2 2 4

V =VV x = - 2DUD(x I + c x2 ) -- K c U.) +
--T m

3

-- K L_(2D + c_)(x I + cx_) sgn (xI + cx2_.

Therefore, V is positive definite and V is negative, giving us asymptotic

stability in the large.

Example 13, _ Third Order - Nonlinear Case

The third order equation

oo

'y" + alY + a2Y + f(y)y = 0

is asymptotically stable in the large if the roots of its characteristic
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equation, calculated as if f(y) were constant, have negative real parts.

The proof of this statement is given below by the application of Ingwerson's

method to this problem.

In order to prove that the above conclusions are valid we choose the

matrix _ in the equation

to be of the form

BzA + A __ ---c__

C ___
m

2a 2(yf' + f) 0 2(yf' + f)

0 0 0

2(yf' + f) 0 2a I

From the usual form of the equivalent system of first order equations, we have

the matrix B given as

B

0 i

0 0

-f(y) -a 2

0

1

-a 1

Thus, the A can be determined and is then reduced to the following matrix 4*.
m

2

a2 + a l(yf' + f) ala 2 aZ

2

ala 2 aI + a2 aI

a2 aI 2

Integrate 4" to get W, integrate _ to get V, and form VVT_ to get V; thus,

we havre:

2

a2 Y

_V = ala2Y

• ell)

+ all(Y) Y + ala2Y + a2Y

2
+ (a z + a2) _ + a t _,"

a2Y + a 1 _ + 2 y
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V = 2/ y + a I f(y)y d y + ala2y y + a2Y y +

i o

+ <a#+ +a# +

_a2f(y ) y2 "" I-- - + 2f(y) y y + al_2 .

._ O; and V isTherefore, V is positive definite if a I > O, a 2 > O, f(y)

nonpositive if a I > O, a 2 > O, f(y) > O and ala2-f(y )

Routh-Hurwltz inequalities for the characteristic equation defined for this

system where f(y) replaces the constant a3. From linear theory these conditions

are necessary and sufficient for the characteristic roots to have negative -

real parts. For this nonlinear case we have thus obtained sufficient stability

conditions, but not necessary conditions.

Example 14, [13, I_ Third Order Example

This problem deals with a third order linear plant with a nonlinear

element. The gain of the nonlinearity is the sum of a linear and a cubic

term. For large error signals, the nonlinear gain can cause instability if

the velocity feedback coefficient, C2, is not sufficiently large. The system

is defined by the following set of equations:

xI = x 2

_2 = x3

2
_3 " - blX3 " (b2 + c2b3) x2 - b3 Xl " b4(Xl + c2x2) •

For this system, we will only summarize the results of Ingwerson and

Rodden and not consider the detailed analysis of the problem°

(I) Ingwerson has shown that the system is globally asymptotically stable

if bI > O, b 2 > O, b 3 > O, b4 _ O, C2 > 0 and blC 2 • i.

> O. These are the
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(2) For no damping (C2 = 0), Ingwerson analytically derived and investigated

the fourth degree Liapunov function:

V = blb 3 Xl2 + blb____4x 4 • 2 b3XlX2 + 2b4Xl3 x2
2 i

+ _ +_ x_+_x_x_+x_

+

whose derivative is

For blb2-b 3 > O, V > 0 outside the region bounded by the planes

xI - _+ blb 2 - b 3

%

The stability domain is the minimmm V-surface which is tangent to these planes.

The tangent points are given by the following:

o_xF,,-I +x2 (b3 b4Xl 2) , =

_q3
(b3 + b4 x12) ,

and

xI

%

= _ blb2 -

(3) Rodden,

stability for the above system with the use of an electronic computer and

for bI = b 2 = 2, b3 = b4 = i, estimated the region of asymptotic

the formulation of Ingwerson.

Example 15_ _4 Second Order Systems

Consider the system defined by

Xl = x2

2
_2 = 6(I - xI 4)+ x I

3
x 2 - xI



- 47 -

The simplest form of a definite function is

V = XTA (_ x -- Z_ al(Xl) I

0

0
m •

.I

Let us consider the form, _ (x), defined by

where B is defined by __ - B x. For this system,

_ :_a_<x_)x_x_÷_x_[_<_x_÷x4
the limit surface, we set _ _ equal to zero,

one has

x2 - 0, x 2 =

(x) takes the form

x2 " xI - To [_

Thus, for _ (_) = 0 ,

x I - al(Xl)X I . ,

(1 - Xl2 + x4 ) j

We now let these two curves, for which _ _ = 0 , coincide.

Therefore, we have

I tx 2 = 0 _ x 1 - al(Xl)X 1 ,

_- x?+x_
or al(Xl) = Xl 2 When the above two curves coincide the equilibrium solution

= 0 will either be globally stable or unstable.

From the above procedure we have obtained the type of al(Xl) function

which is required_ but for more _lexibility we replace the al(Xl_ in V by

2
a constant, bl, times x I Thus, our candidate for a Liapunov function

is V = b I x_ + x22 , which is positive definite if b I > O. The time

derivative is

• 3 2 2 4 3

V = 4b I xI x2 + 2 _x 2 (I - x I + x I ) -- 2x I x2 j
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Thus, V is semidefinite and is not identically equal to zero on any non-

trivial solution of the original system. In conclusion, the system is

globally asymptotically stable if G < O and globally completely unstable

if _> O .

Example 16, _ Van der Pol's Equation

Let us consider van der Pol's equation with _ = 1 :

_i = x2'

½2 = _(I - x_) x z -- xI

By the following choice of V we can show that the system is unstable inside

2 2

the circle x I + x2 = i :

2 2

V = alx I + a2x 2

The function,_, defined in example 15, becomes

2 2

(_) = 2alXlX 2 + 2a2x 2 - 2a2x I - 2a2xlx 2.

As before, we let _) = O and the result is that x2 = O and

_ (a2" al) Xl Ix2 _ a2(l - X_) The curves coincide if a I = a 2.

aI = a2 = i in V. This gives

2 2

V = xI + x2

Thus, let

and

• 2 2
v = 2 x2 (i - xI )

Therefore, from instability theorems, the van der Pol equation is unstable

2 2

inside the circle xI _-x 2 = i.
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As another generating V-function we choose
2

V ---al(x I) xI + 2a12 (x I) XlX2 + a2x2

where

2(x) = x2 (a12 + a2 -a2xl 2- ) - al2Xl

2
+ XlX2(a' I a2 + a12 + al2x I ) •

+

By solving the equation_(_) = 0 and constraining the two surfaces, given by

solutions of this equation, to coincide and assuming that the functions aij(Xl) are

polynomials in x I, the following expressions for al(x I) and al2(Xl) are obtained:

4 2

al(Xl) = a2x I - 2a2x I + 2a2,

2
al2(Xl) = a2x I - a2.

Before substituting these expressions for a12 and a I into the V-function,

the following constants are introduced:

4 2
al(Xl) = blX I - b2x I + 2a2,

2

al2(Xl) = ½ b3x I - a2.

Thus, our V-function becomes

V = blXl 6 - b2Xl 4 + b3 x3 x2 + 2a2x _ +

2

- 2a2xlx 2 + a2x 2 ,

where the corresponding V with respect to the system is givem by

• 5 3
V = (6b I - b 3) x I x 2 + (b3 - 4b2 + 2a2) Xl

+ +
x2 +

Rewriting V gives

+ (b3 - 4b 2 + 2a2) XlX 2 + (3 b 3 -2a2) x 2 _ b2x 2 + 2a 2 _ '



where the expression in the brackets,

order to simplify the form

Consequently, the curve _(_ = 0 is defined by

2

3 bI
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we set b3 - 6 bI.

2 2
x 1 - (3bl- 2b 2 + a 2) XlX 2 + (a 2 - 9bl) x 2 = a2,

and the V-function becomes

V = blX _ -b2Xl 4 + 6blXl 3
2 2

x2 + 2a2x I _ 2a2xlx2 + a2x 2 •

_n

defined by:

V " constant; namely, the inscribed and circumscribed curves to the closed

curve _ _ = O. By numerical techniques, this stable limit cycle

can be approximated "arbitrarily close". Also, it can be proved that

outside the circumscribed curve the system is asymptotically stable.

Example 17, _ Third Ord,er System

This is an application o_ Szego!s technique to prove the existence of

local stability for systems with only one critical point. The system is

O

X I = x 2

:_2 ffi X3

x3 = 3x3 - 2x2 + Xl 3,

limit cycle in the annular region defined by two curves of the family,

The Poincare - Bendlxon theory states that there exists at least one stable

b 1 > O, a 2 > 9bl.

Thus, if one chooses b I, b 2 and a3 in the following way the curve

_ _ ffi 0 is closed (definite) and the family curves, constant,of V

is a family of closed (definite) curves:

6bl(2a 2 - 18bl) - (3b I - 2b 2 + a2) > 0 ,
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to be
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= O. The form of the V-f_nction is assumed

2 2 2

V = all x I + a22 x 2 + x3 + 2ala 2 XlX 2 +

+ 2a23 x2x 3 + 2a13xlx3,

where aij = aij (Xl, xj).

s_tem is

The corresponding _x) for this third order

(x_) = x32 (2a23 - 6)

- 6x 2 - 2x_ + 2a13 x2

+ 2 _all XlX 2 + a12 x2

+ x3 _2a22x 2 + 2a12 x I

6a13 xI +

2
- 2a23 x2 +

- 6a23x2 +

- 2a13 XlX 2 - al3x I - 2a23x I x 2 .

The conditions which make V indefinite on a closed surface are

a13 = O, a23 = O, a12 = Xl2 , a22 = Ii.

For simplification purposes, we let

2
all = 3/2 x !

Therefore, we get

4

V = 3/2 x I + i_x22 + x2 + 2Xl3 x 2 + 6x2x 3

where

_ov_unctiooispositiveandolose_betweentheplanesIxlI --
andV is negative semidefinite and not equal to zero on a trajectory of

_o_o. _ooo_o_o_ jx_l- /_ __ _o_w _e._
definite outside Ixl I = _-- . Thus, the system is stable in the
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V = 3/2 Xl4 + 11 x22 + x 2 + 2x 3 x2 + 6x2x 3

and unstable according to Chetaev's theorem outside the planes

__/7-

IxiI-/r
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_ WORK OF SZEGO AND ZUBOV

SUMMARY

This section considers Zubov's method for generating Liapunov functions,

which are solutions of partial differential equations, along with the generaliza-

tions given by Szego. Also, included in this section is the work of Margolis and

Roddenwhich deals with the numerical solution of Zubov's partial differential

equation. A compendium of examples is given at the end of the section.

INTRODUCTION

The first part of this section concerns itself with the discussion of

the stability theorems of Zubov. In these theorems Zubov describes the

partial differential equations which the Liapunov functions n_atsatisfy to

guarantee the various types of stability. The domains of asymptotic stability

are also determined from the V-functions satisfying these partial differential

equations. The types of problems considered in Zubov's theorems are as follows:

(i) the asymptotic stability of the null solution, (2) the stability of systems

with persistent perturbations, (3) the determination of analytic systems having

specified domains of stability, (4) the stability of systems with homogeneous

right-sides, (5) stability of systems with self-oscillations, (6) and the

stability of nonautomous systems.

Next, we discuss the application of numerical techniques to the solutions

of the Zubov equations. The work of Zubov, Margolis, Vogt and Rodden is

considered. Zubov's theorems are listed and discussed for the second order

case, with the implication that the theorems are applicable for higher order

systems. The numerical results obtained by Margolis and Rodden are presented

and conclusions and proposals for future work are given.
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The final part of the discussion is concer_ed with Szego's work. This work

is in two parts. One,he shows that the solution of Zubov's equation can be

reduced to the determination of a matrix, A_). This technique is similar to

the variable gradient method. Two, Szego constructs a generalized Zubov partial

differential equation. From this equation he is then able to derive meaningful

stability results for a wide class of autonomous systems. He also extends this

work to the determination of the stability properties of certain manifolds in the

Euclidean space, En-

At the end of the section is a compendium of examples which exemplify

the theories and methods of the above authors.

ZUBOV 'S WORK

In reference [i], Zubov considers an autonomous system defined by

= f (_) ,

where _ is specified in Euclidean n-space, En, and is continuously differentiable

up to order _>/ O. A solution of (I) exists for any _ (0, x__o) =-_o in En.

This solution will be continuously differentiable with respect to _ up to order _.

In system (i), we assume that the trivial solution _ = O exists; that is, _ _) = Oo

Theorem 1 gives the necessary and sufficient conditions for a region A about

to be a re_ion of asymptotic stability of _o (This region A is an open, connected

set about _ = O.)

Theorem I

"In order that region A be a region of asymptotic stability of _ = O of the

(l)

which have the following properties:

i) V is specified and continuous in A,

2) _ is specified and continuous in En,

system (i), it is necessary and sufficient that there exist functions V_) and / (_),
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3) for all x in En, 0 < V < 1 if x _ 0_,

4) for all x in En,

5) for any _z >

> Ii

6) V and _ --_

7) if Y_ is a point on the boundary of A and

lira V _ -- I; and if /Ix I/

(x_ x)
8) [dV_(t, _o 1 +

> Oifx / 0__,

O, there exist positive constants _ and o<Isuch that

for /Jxll >/ _ and/_> > o<, for /ixil 
o as

+ oO for x in A, then V_ _ i.

where the function _ can always be selected such that the function V_ is

continuously differentiable over all its arguments in region A up to and

ilncludlng order _ ."

Corollary, I states that the equation of the boundary of the region of

asymptotic stability, A, can be obtained, at least in principle. Corollary 2

deals with asymptotically stable systems on the whole.

Corollary i

! "Consider the set of all points _ such that i - V_ = _ ,

belonging to A, 0 < _<I. This set, for each _ , represents a closed

.surface 5 _ , which bounds a region _I ' containing the point _ = O.

Surface 5> forms a section of the region A; that is, any integral curve

of system (i) intersects 5 A only once, from the outside of region GA to

the inside. The surface So, V = I, is the boundary of region A, and S I

coincides with the point _ = O."
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Corollary 2

'_he trivial solution of system (I) is called asymptotically stable in the

whole, if the region A equals En; that is, if _(t, X_o) _ 0 as t _ oo

for any 3o'"

The extension of theorem I to the concept of asymptotic stability in the

large is considered in the next theorem.

Theorem 2

"In order that the trivial solution of (I) be asymptotically stable in the

whole, it is necessary and sufficient that there exist two functions VI_

and _ _, which have the following properties:

the functions VI and _ are specified in En and continuous there, andI)

Vl )= @)= 0;

2) V I > 0 for _ _ 0 and V I _ + =_ as __ _ and

# > o when # o;

3) for any _Z > 0 there exists a positive constant _[ such that

>I _t when _z < I]_ll ;

4) 21 = - _ / i + f_ + • • • + f2n "

It should be noted that the necessary and sufficient conditions for the

asymptotic stability of a system in the whole were first given by Barbashin

and Krasovskii. As applied to system (1), these conditions were formulated

only for _ >/ 1"

Corollary 3

"If _ >I

y-
_x i

i = i

[ and if x = 0 of system (I) is asymptotically stable, then

fi_) = " _) i + fl _) + " + fn
(2)
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has a unique continuously-differentiable solution, determined by VO_= O,

specified when _ belongs to A and satisfying the conditions of Theorem I

for certain _ 's. It is sufficient that _ _ has the property

o

_(t, _o)) dt _ + =_

at sufficiently small

decrease in x(t, _o ) as

}Ixo H " Thus, the _ depends on the character of

_ _ , (as exemplified in the following

remarks)."

(3)

Remarks About the Above Theorems

-pt

(i) If it is known that Ix(t, 2_o)II_ c _

for sufficient small _ xo_ I , then

I1 _11TM,m >O
-_.

Ul II

(3)

for t

,c >0, P >0

be chosen such thatcarl

m

> m_<> I .

Examples of generating V-functions for various systems using the above

partial differential equation for V are given in the back of this section.

We now consider a more practical theorem of Zubov's; namely, we consider

a system of differential equations, as in (I), in which the functions _(_ are

known only approximately. That is, we are interested in whether the qualitative

estimate of _(t, -_o) is stable with respect to small changes of the functions

_. Consider the system defined by

- + t), (4)

where _ is continuously dlfferentlable and R is continuous such that (4)

satisfies the conditions of existence and uniqueness of solutions.
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Theorem 3

"If the system (i) has an asymptotically stable trivial solution, having

a certain region of asymptotic stability A, it is possible to obtain for the

functions Ri_,t ) an upper bound Ri_ ) such that IRIS, t)I < Ri_ ) in some

region about the equilibrium point. Therefore, the system in (4)has an asymptotically

ts

stable trivial solution contained in region A.

The proof of Theorem 3 relies on the results of Theorem I. Other remarks

about Theorem 3 are:

(1)

(2)

if the functions Ri (x, t) are such that I Ri_, t)i < Ri(x_ only in the

region A, the statement of Theorem 3 still remains valid;

if the region A coincides with the entire space, then x = O of system (4)

is also asymptotically stable in the whole.

Another application of Theorem i is the following theorem giving the

conditions for which it is possible to define the solutions of (i) for

t belonging to ( -- _ j O

Theorem 4

"In order for any integral curve _(t, _o ), X_o belonging to the region A

of system (i), to be defined for t belonging to (-=_ 0_), it is necessary and

sufficient that all of the conditions of Theorem i be satisfied and that

_ (x_ i + fl + + f n < K< oo, for all t ."

Theorem I also makes it possible to establish the analytic form of the

right halves of the system (i), having a previously specified region A. Thus,

we specify that A is any region containing a sufficiently small neighbor-
[

hood of _ = O. The boundary of A is denoted by S° Region A is such that there

exists a V-function with the following properties:
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i) V O_ = O, 0 < V < 1 for x in A;

2) the equation I -- V = _

surface ._ which bounds a region

of A and is not _0.

0 < k < I , defines a closed

_defined by V < I - _ ;

0, where _x* is on the boundary

We determine the right halves, _), of (I) from the linear equations

_PxL _fL = q(x_) (5)
u

where Pli = _xi and ql = - _l(l--V) . The

// x // > _ > 0 . We further assume that the functions Psi, qs'
I

S >/2, 3, .., n_ i=l, . . ., n are so chosen that the system (5) has a solution

f = _f* such that

e

: x = f* (61

has a trivial solution and satisfies the conditions of existence _nd uniqueness

in A.

,Theorem 5

'The trivial solution of system (6) has a region of asymptotic stability A,

as defined above; and, conversely, if the system (I) has an asymptotically

stable trivial solution with a region A, then its right halves can be found

from the linear system in (5). (An example of this theorem is given in the

back of this section)."

We now consider systems of differential equations, equation (i), with

_omo_eneousri_ht sldes, f(x). The definition of a function which is homogeneous

of rational order H= q , where q is odd, is as follows: "f_) is

homogeneous of order_provlded the equality f(cx_) = c _ f_ holds. The
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function is called positive-homo_eneou s if c > O and _ is arbitrary." It

is known that if a homogeneous or positive-homogeneous function f is continu-

ously differentiable of order 7) _ I over all its arguments, then it

satisfies the linear partial differential equation

xi _f,
g_ f
i

i=l

where H is the index of homogeneity of the function f. Also, if _/>2,

then the function ____f is also homogeneous of order#- I, which can

_xi c_ f
be verified by differentiating f (cx) = _ with respect to xio

Let us consider a system of differential equations

_ _ ,

where f is continuously differentiable in all its argumel%ts to order _>I 0

and is homogeneous of order_,_ > O. We assume that system (8) has a trivial

solution _ = O. It can be shown that if _ = O of (8) is asymptotically stable,

then for a sufficiently broad class of systems the following inequality holds

-,K

II_(t'_O) l _ Alt for t _i T and II_o II m i,

where A I is a sufficiently large positive constant and oi a sufficiently

small positive quantity. The expression _(t, _Xo) is the solution of the

initial value problem of the system (8).

(7)

(8)

(9)

Theorem 6

"If _he system (8) is such that its solutions satisfy the inequality (9),

then there exists two functions V and W, specified in En, and having the

following properties:

I) V and -W are positive definite;

2) +W is positive-homogeneous of order m, and V is positive-homogeneous of

order m + I -_, where m is a sufficiently large positive number;
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3) V is continuously differentiable along the integral curves of (8);

that is, V_(t, Xo) ) has a continuous derivative V --W. (From Liapunov's

work we see that conditions I, 2 and 3 are both necessary and sufficient for

the asymptotic stability of the asymptotic stability of the trivial solution

of system (8) satisfying inequality (9).)"

It can also be shown that if _ _ I for system (8), then V and W

satisfy the system of partial differential equations

n (9) n

Z U__!vfl -w, _ _v xi -(m-_ + l) v,

where m is the index of homogeneity of W and is a sufficiently large positive

number= When n = 2, the functionV(Xl, x2) for _ _ _ can always be found

in closed form. In the next paragraph we verify this statement.

(IO)

Second Order Case°

The system of equations for V(x, , x_) is given by:

(_) (_)
__Xvf! + __Xvf2 - w,
_x I _x2

+ 3_Xv x2 =(m-_/+l) V
_x2

From these we can solve for 3V, ___V; that is:

_x I _x 2

_v = AV + B

_rxI

-_V = L'_ +D

3x2

(11)
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where

-(m + I -;/) f2 ; B = WX2

A -- x2_>- x,f2_) x2f I_) - XI_)

-(m+l -N)fl
C = _) -

WX 1

xlf 2 - x2f I xlf 2 - x2f I

The general solution of the first equation is given by

fxxlv --e_ A(_, x2)Jg (x2) +

I0

Choose _ (x2) such that the function V constructed above satisfies the
I

_v_x_
second equation, _x 2 ,, CV + D , and in addition, we

XlO xlO

demand that V(0, O) = 0.

For simplicity, we use the following notation:

xI

M 2 = M I

xlO

IrI
Xlo

which gives the following formula for V,

V = M I _ (x2) + M 2.

Inserting this formula into __._V = CV + D

_x2

, we obtain

4 x 2
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where

N I

N2 =

It can be established that _N.I = _N__2 = 0

xI _ xI

The general solution of the above equation for / is of the form

--g-Pl(X2)÷

where _ is an arbitrary constant= If _is defined by

= . + _./M I
i(o)

function

, for x I = x 2 = O, then the

V(Xl ,x2) ,0,i'1÷"1'2+M2,

will satisfy system (ii) and the condition that V = 0 when xI = x2 = O.

Equation (12) gives the necessary and sufficient condition for the

asymptotic stability of the trivial solution of system (8) for n = 2, and it is

asymptotically stable if and only if the function V(Xl, x2) is positive

definite. It is understood that•W(Xl , x3) is negative definite and homogeneous

of order M >_ - 1 .

From reference [2] the reKions of attraction of self-0scillations of

nonllnear systems are investigated using Zubov's partial differential

equation to determine the V-function.

Let us consider the equation

_=f_ ,

whose rlght-hand members are defined in En. We assume that the system (13)

has a periodic solution x --x (t) of period T.

(12)

(13)
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Definition

"A periodic solution _(t) of the system (13) is called asymptotically

stable if for any & > O there exists a _ > O such that if

< s ,then_E_(t_< _ fort >
and, besides, _(t_ _ o as _-----_ oo ."

The function _ is the distance from the transient process in the

system (13) to the periodic behavior:

O

n
_) = inf _- _Xl - _l(t) j

2

The Russian Academician A.A. Andronov called asymptotically stable

periodic behaviors self-oscillatory behaviors. It is known that the nonlinear

system (13) may have self-oscillations, while the linear systems never have

them.

(14)

Definition

'The set A of all points -_o of the n-dimensional space is called the

re_ion of attraction of self-oscillation, if for _(O) = x
--o

it follows that _[_ (t_-----_ o as t _ oo

is the transient process in (13)."

belonging to A,

, where _(t)
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It is assumed that to every point of the n-dimensional space x_o there

corresponds a solution of (13), _ = _(t, _o), satisfying the initial condi-

tions _(0) =/_o - We also assume that x(t, x_x_x_x_x_x_x_x_x_x_o) is continuous with

respect to t and _o.

Tl%eorem 7

'_n order that reglon A, consisting of entire trajectories of system (13)

and containing the set _) < _ for sufficiently small _ , be the

region of attraction of self-oscillations of the system (13), it is necessary

and sufficient that there exist two functions V and W satisfying the

conditions:

I) V is given in A and continuous there;

2)

3)

4)

W is given in E n and;

N

V and W vanish at points on the curve x;

V outside the curve __ takes on positive values from (0, +I); the

=-W(l -v) l+f +. • • + fn ;5)

6) the function V approaches i as x approaches x.,_ where x denotes a

finite point of the boundary of the region A."

Remark 1

In equation (15) we can replace V by V I , where V I = - _(i - V).

a result of this substitution (15) becomes

_ n
Vl =-W + _ f2

i=l i

(15)

(16)
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Here V I , in region A, will take on the positive values from (0,

the self-oscillations. The function V I _ +

=_D ), except on

as one approaches

a finite or infinite point on the boundary of A. If the function V I is

continuously differentiable with respect to its arguments, then (16)

becomes

Remark 2

"_V_I fi =" - W +
i=l _x i i=l i

If system (13) has self-oscillations, then it may be shown that A is

an open and connected set. Also, it may be shown that on the boundary of

region A are situated entire trajectories of system (13); that is, if the

integral curve of (13) begins on the boundary of the region A, then it

remains on it with increasing and decreasing time.

Remark 3

In the back of this section we Consider a third-order system which is

simple but at the same time it contains the generality which is characteris-

tic of the behavior of integral curves in nonlinear systems in the presemee

of self-oscillations. •

In reference [_ Zubov applies his partial differential equation

technique to obtain Liapunov functions to be used in the analysis of uniformly

asymptotically stable trivial solutions of systems of non-stationary differential

equations.

Let us consider the following system:

t),

where the right half is specified for _ belonging to En and -- oo < t < oo

and satisfies conditions sufficient to guarantee the existence of a unique

(17)

(18)
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solution for the initial value problem corresponding to (18). The initial

value _f _, -_o , can be any point in En and the initial time satisfies

- oo < to < oo We also assume that the solution of the initial

value problem _(t, _o, to), depends continuously on X_o and to; and further

we assume that _ = O is a trivial solution of (18); that is, _, t) =

for all t.

Definition

"The trivial solution, _ = O, of (18) is stabl._.._ein the sense of

Liapunov, if for any E > 0 there exists a J > 0 such that when

/I_Xoll < _ and to

to)ll<

belongs to ( -oo, _ ), we have

for t > to. If, furthermore

0 as t _ + _ , then x = O_ is

asymptotically stable."

Definition

"If x = O is asymptotically stable, then the set of all points (X_o, to)

such that lJx(t, -_o, t)// _ 0 as t ----m OK) is called the

region A of the asymptotic stability of _0 = 0)°"

Definition

"An asymptotically stable trivial solution of (18) is called uniformly

asymptotically stable if IIx(t,-_o ' to)II _ 0 as t - to _ 00

uniformly with respect to to belonging to ( -00, (X)) and /IX-oI/ C

where _ (_) corresponds to the definition of stability."

Definition

"An asymptotically stable trivial solution of (18) is called uniformly

attractin_ if for any h > 0 , and for h _ _ one can indicate a
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and for h _ II_oll-_ _.."

- 16 -

for any to in ( -OO,00 )

We now llst several of Zubov's theorems which are concerned with the

stability of nonautonomous systems. The first two theorems propose certain

differential equations which• define V-functions used in the stability

analysis. The third theorem deals with a general system in which a per-

sistent disturbance is present. Zubov's theory shows that his "partial

differentlal equation" method can be extended to nonautonomous systems

but the actual analytic solution of the differentia], equations is still

very difficult to obtain.

Theorem 8

"If any solution of the system (18) is defined for - oo < t < oo

then in order that a region A, which contains a sufficiently small neighbor-

hood of the set _ = O for all t in ( - CO, O0 ), be a region of asymptotic

stability of the uniformly asymptotically stable and uniformly attracting

trivial solution of (18), it is necessary and sufficient that there exist

functions V_, t) and /_, t) h_ing the properties:two

and continuous in A; / is specified and continuous(1) V is specified

in - oo _ t < oo and En;

(2) 0 < v < + 1

-oo <t < oo

(3) for any "(2 > 0

for II -*It >_'2

for II *-II >/ _2

for (t., x_) in. A; _ > 0 for x in En,

,, I1 _11 o ;
, there exists values _I and o< I such that V > _i

and - oO _t ,0o ; $>°e" I

and - oo < t < oo ;
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and V _ 0 uniformly in t as IIx/I _ 0 ;(4)

(5) if (_, _) is a point on the boundary of A, IIxll _ 0 , then

and

(6)

, for (x, t) belonging to A, as fix- _xl_ _ 0

the total derivative of V, with reference to (18), satisfies the

equation

(i - V)." (19)

Theorem 9

"In order for a certain region A, containing a sufficiently small

vicinity of the axis _ = O and -- _ < _ < , to be a region

of asymptotic stability of the trivial solution of (18), it is sufficient,

and in the case

n 2

i=l i

J M

it is also nenessary, that there exist two functions V and _, having the

properties:

.(i)

(2)

conditions i - 5 of Theorem 8 are satisfied;

the total derivative, V, satisfies

/ n 2=_-- /(l'V) i + _ f
I=1

t/

Not____._e

If it is assumed that !_, t), in (18) and _ (x, t) are differentiable

of a sufficiently high order, then V in equations (19) and (20) can be

written as

{,_ __ "_v Dv .fi ,t) +
i=l

(20)

(21)
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Thus, V can be fDund as a Solution of (19) and (21), or (20) and (21), and

satisfying the condition V_, t) = O. We also note that if A coincides

with the entire space of points (_, t), except x = 0 and -- _ _ _

then the trivial solution of (18) is asymptotically stable in the whole.

In Theorem _0_ we examine the system (18) under the influence of a

persistent disturbance _(_, t); that is, we consider the equation

The vector function _ is assumed to satisfy the conditions required for the

existence of a unique solution to the initial value problem. If the vector

function ! is continuously differentiable over all the arguments, and if

= O, the trivial solution of (18), is uniformly asymptotically stable,

one can show that there exists an upper limit for _(x, t) such that when

Iril _ r. G, t) the trivial solution of (22) will be

asymptotically stable and will have the same region of asymptotic stability

as the trivial solution of (18). Theorem i0 deals with the boundedness of

the solutions of (22) assuming that the trivial solution of (18) is asymp-

totically stable.

Theorem i0

"If the trivial solution (18) is uniformly asymptotically stable, if

the condition

n 2

_'- f _ M , M --constant

i=l i

is satisfied for t belonging to ( -- (_, O0 ) and /Ix/I _ h , and if

there exists asymptotic stability in the whole in system (18), then for a

continuously differentiable f_, t) in (18) there exists a function RIG , t)

such that for all riG, t) any solution of (22) will be bounded when the

following is true:

(22)

(23)
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and t in ( - _, _).

WORK OF ZUBOV _ MARGOLIS _ VOGT, AND RODDEN

In the next series of paragraphs we will consider the application of

Zubov's work to the computation of V-functions and determination of regions

of asymptotic stability through the use of numerical methods and computers.

His method is applied to the partial differential equations (2), (19) and (20).

The form of the V-function used in Zubov's analysis is:

V = V 2 + V 3 + o . . + V m + . o . ,

where V m is homogeneous of degree m in x I , x2 , .o. , xn. This power series

for V will converge in a sufficiently small neighborhood of _ = O.

are:

The differential equations which are considered by this method of analysis

(MI,.. "'M n) MI Mn
PI XI --- Xn

oo

X I • . X n

th
where B is a constant n--order matrix and the P's are constant coefficients.

We assume that the series in (25) are convergent and that B is "asymptotically

stable"; that is, the real parts of the elgenvalues of B are negative. The

discussion which follows is taken from references [i_, [4], [5] and [6_.

The following outline of Zubov's work as applied to second order systems

was given in reference [4]. The method of analysis for higher order systems

is similar to the second order case. The system being considered is

= f1(x,y)

= f2(x, Y).

(24)

(25)

(26)



- 20 -

The basic partial differential equation for V is

_ + "_ _ =-_x, _/_ + _ +_' _-v),_v
_-;- 9-'7

where _ is a positive definite or positive semidefinite form of degree

2M, M _ i . Given _ , it can be proved that V has a _

power series representation:

i V(x,y) = V2(x,y) + . . + Vm(x,y) + . •

.... v(o,o) = o.

Zubov also shows that if the solutions of (26) can be analytically continued

for all real t, then (27) can be written in the following form:

_--XV fl + _V f2 = - _ (x, y)(i- V)

9x

where _ is a quadratic form, (the V's in equations (27) and (29) are

As in (27), the V satisfying (29) for a given _ isobviously different).

unique and can be expanded in the power series given in equations (28)°

Substituting equation (28) into equation (29) gives the following

recursion relationships:

(27)

(28)

(29)

_V___2ill + _V2 f21 = - _ 2(x'y) '
_x _y (30)

_V___mill + _V__mm
_x 9Y

for m = 3, 4, .- ....

f21 = Rm(xlY),

In equations (30), the/2function is the quadratic

component of

(x,7) --- _(x,y) i + fl + f2 =

• °/_ _x,:,>÷/_x,y>+ ... ÷fo_x,y>+... (31)
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thwhere m is a homogeneous form of m power in x and y; the V2(x , y) is a

positive definite form defined in {28); fll and f21 are given by

fll = all x + al2Y ,

f21 = a21 x + a22 X ,

which are the linear terms in fl and f2 of (26); Rm is a known function of

the previously computed V2, V3, ... , Vm. I functions; and the defining

equation for R,v as given in [6] , is

j+k_m j

I ml m2
j+K=m+l m I + m 2 = j _x

+

(32)

(33)

+

P2(ml, m2) x y __

m I "I"m 2 = j _ y

where j, k, m = 2, 3, 4, ... and the P's are given by equation (25).

Equation (29) can be transformed into the following if V is replaced by

v. =- tn(l- ;

that is, (29) becomes

(34)

(35)

When 0 & V < i, V, satisfies 0 _ V, < _ .

In the list of theorems_which are concerned with the application of Zubov's

Approximate Methods in the analysis of the stability of second order systems, the

following definitions are required.

Definition I

"Region A is defined to be the domain of asymptotic stability of system (26)."
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Definition 2

"G(_) is the set of points (x, y) in the phase plane which satisfy the

inequality O _ V(x, _) _ _ for any _ belonging to (0, i)."

Definition 3 (Modified in[6] )

"The set W 2 consists of all points of zero V2 which define boundaries

between regions of positive and negative V2' while excluding from W 2 those

points of zero V 2 which lie in surrounding regions of V2 with cons$_nt sign,

V2 being of constant sign except for these exceptional points. The set

W I contains those exceptional points. Designate by C I the smallest value of V 2 on

jet W2, and C2 as the largest value of V 2 on W 2. (The reason for the existence of

set WI is that it is sometimes convenient to use semidefinite _'s in

(29) a_ _ (35).)"

pefinition 4

'The reNion A is bounded if there exists a positive constant R such

that-x 2 + y2 = R encloses A. O
\

Definition 5(n) n
[ "Let V (x, y) equal the finite sum, _ V i (x,_) .

(n) i-2
in _], we define W 2 (x, y) as all the points (x, y) on which

(x, y) = O, other than those (set Wl(n) ) for which

• (n)
v (x + y +

or

for all _x and _y infinitesimally small.

Let CI (n) be the minimum of v(n)on w2(n! and let A (n) be all

such v(n) _ Cl(n) o"

(x, y)

Then as
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Wenow give a brief outline in "theorem form", of Eubov's Construction

Technique for obtaining approximations to the domain of asymptotic stability.

Theorem I

"If (x, y) belongs to region A of definition i, then the V-function

defined by equation (29) satisfies the inequality 0 _--V W.i.

also have V, of equation (35) satisfying 0 _ V, _ _ ."

Thus, we

Theorem 2

"If (_, _ ) is a boundary point of A and (x, y) belongs to A, then

then _im V(x, y) -- i , or

!

Theorem 3

Lira V* (x,y) = OO."

(x,,)

"If k belongs to (0, i), then set G( _ ) is a bounded domain in domain A."

Theorem 4

'The curve V = i is an integral curve of system (26)."

Theorem 5

is given, then the solution, V, of (29) is unique in domain A."l,_f

T_eorem 6

'_rhe boundary of A is a family of curves defined by V = I."

Theorem 7
L,

"If x = O, y = 0 isi_symptotically stable in the whole, then V < 1 for

all (x, y) in the phase plane."

Theorem 8

'_et V be the solution of (29).

is the solution of the syste_w _ =

Then V "= _ ,

V and y = - _ V

9y @x

equal a constant,
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V " _2""
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, then V = _ i is enclosed inside

Theorem 9

'Tor anysystem x = fl (x, y) and y = f2(x, y) there can be related an

entire class of systems of the form x = _V y = - _ V

a7 ' a-i-
where V depends upon the form of / . (From the previous theorem each closed

curve V ffi _ i has no parts in common with V = _if _I _ _2

Thus, from this result the next conclusion follows.) The boundary of domain A

will be the only common integral curve of the two systems for 0 < _ _ i ."

Theorem 9 is avery important theorem in obtaining approximate domains

of asymptotic stability. In references [4] and _3, Theorem 9 and the

"approximation" theorems given below are applied to Van-der-Pol's equation,

other second'order equations, and a third-order equation.

Theorem i0

"Let L be an integral curve of (26) which lies on the boundary of A. Then

there exists a value C4 such that V 2 = C4 is a curve which is tangent to L at

(Xo,Yo)"

Theorem II

'"Ehe curve V 2 = CI , of definition 3, is contained in A provided that the

set WI, for V 2 < CI, is not a half-trajectory of the system."

.. _ • ,

Theorem 12

"If A is bounded, V 2 = CI• is bounded for any permissible /_ ."
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= C is unbounded, then A is unbounded."

Theorem 14

"If _ in (29) is an admissible function and C2 is finite, then domain A

is bounded and its boundary lles in the region C 1 __. V 2 _-_ C2."

The next theorems are concerned with the higher order approximations for

V. As will be pointed out later, these higher order terms need not give

better approximations to domain A than V2.

Thus, the application of Theorems 12, 13 and 14 may give fairly good results

and the higher order terms need not_be computed.

Theorem 15

'The curve V (n_ = Cl (n)

(n) for V
the set of points W 1

system."

, n = 2, 3, ... , is contained in A provided that

< Cl(n) is nbt a half-trajectory of the

Theorem 16

"If A is bounded, then V In) %n)= C I is bounded for any admissible

v(n) rIf any = CI (n) is unbounded,'then A is unbounded."

Thus, from V (n) .CI (n)= : , we can approximate the region of asymptotic

(n)
stability. As _--_ _ , CI _ I. In references [4] and [5]

second and third order examples were investigated by making use of the above

theorems and electronic computers_, In Rodden's work, _], equation (29) was called

the "regular" equation and (35) was called the "modified" equation. We will now

discuss the results of these studies.

Both authors, [4] and [5], studied Van-der-Pol's equation,

2 "x 3
"Xl + e(l- Xl) xI + x I = O, x2 = xI + E (x I 1/3). For _ = Xl 2

in
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(29) both authors obtained similar results. That is, V (4) gave the worst

approximation for A, V (6) a better approximation, and then V (2) , V (I0) ,

V(14! and V (20), in that order of increasing improvement of the approximate

stability domain, where V (20) was very close to the actual domain A. In [5],

Rodden replaced / = Xl2 by _ = Xl2 + x22 . The results in the order of

best approximation (first V giving the worst approximation) are V (6) , V (2) , V(10)_

_V (2) V (18) _ V (20). But for this case the boundary defined by V (20) is not

at all close to the actual boundary of A. The conclusions which can be made from

the above analysis are: (I) the convergence of the series in (28) is no__tuniform,

(2) the convergence of series (28) may be very slow, and (3) the choice of

(29) and (35) greatly influences the accuracy of the approximation to the domain

of asymptotic stability, A. An example from Zubov, _], shows why conclusion (3)

may often be valid° Let partial differential equation for V be given as:

If

n

Z xi  _Xv = -v) .
_x ii=l

n 2

, the solution of (36) is

If

i ° 21V(_) = 1- exp -- _ x

i-I i

n 2 -3/2 n 2

(I+ Z x ) ( Z )x

i=l i i=l i
, the solution of (36) is

VC_) = 1 - exp (l + x ) - I
, i=l i

If we seek V_ in the form of a series solution, (28), equation (37) would

in

(36)

(37)

(38)
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have a series expansion which would converge in the whole space, while the

series corresponding to (38) would converge in a bounded part of the space.

in reference (4), Margolis concludes by stating that he is attempting

to program the Zubov stability analysis for the second order problem

oe

x+c(x) x,,o,

where c and r are polynomials or convergent power series in x, having non-

zero constant terms. He also mentions the need for further research on

computer programs for higher order systems and for nonanalytic nonlinearities.

i To conclude the discussion of this work let us consider some more of

Rodden's numerical results, [_. He considered the second order example

x=y;

(39)

y=-x-y+x 3 .

For the "regular" Zubov equation and with a semidefinite / , = x2 ,

he found a lack of uniform convergence to the domain of stability of the

sequence . When he used the "modified" Zubov equation and the same ,

the convergence became more uniform but the rate of convergence to the domain

of asymptotic stability was slower. Rodden also studied the second order

system given by

x = x + 2X 2 y

y=y.

He applied both the regular and modified Zubov equations with =2(x 2 + y2)
/

and obtained the same results asIn the previous case; that is, nonuniform

convergence and a slow rate of convergence of the V (n) 's.

Lastly, Rodden considered a third order system defined by

xI = x2

x2 = x3

x 3 = _ blX 3 - (b2 + C2b 3 ) x2 - b3x I - b 4 (xI + C2 x2 _3
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In this system the coefficients are positive and it can be shownthat a

sufficient condition for global stability of the system is that blC2 _ i,

where C2 is called the "damping term". Let C2c be the critical value of C2;

= ' , the regionthat is, blC2c I. Thus, for C2 s satisfying 0 < C2 < C2c

of stability of the system is no___tglobal. In Rodden's example, C2 was equal

to C2C/2.-- He determined V (2),--V (4) and V (6) from both the regular and

} 2 2modified Zubov equations for a semidefinite = xI + x2 . His conclusions

were the same as in the previous systems; that is, the convergence appears

to be nonuniform and the rate of convergence is slow.

SZEGO'S WORK

In reference [93, Szeg_ investigates the stability properties of the

solution _ = O of nonlinear autonomous systems by considering the partial

differential equation suggested by Zubov. He proves that this problem can

be reduced to the construction of a matrix A(_) whose elements have the form

alj_ aij(xi, xj). The same result was reached in a different way in one of '_

Szego's earlier papers in which the nonlinearities occurred in polynomial

form. The dlsausslon of this earlier work is considered in another section of

this report. Szego claims that the work in [9] is not limited to the investigation

of only one singular point but can be applied to systems which have several isolated

singular points.

In references [I0,ii] Szeg_ introduces a new partial differential

equation for the stability analysis of autonomous control systems. This new

equation turns out to be a generalization of the partial differential equations

of Zubov.

We will first discuss the work of reference [93 . The system being

considered is

= , = (40_
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where the usual conditions for existence, uniqueness and continuity of

solutions are satisfied. We seek a function V_ such that

= (V_ T _ (x_) = _ , (41)

where _ is any scalar function which satisfies either the condition of

definiteness on the trajectories of (40) or has the for_

In (42), _ _) is definite on the trajectories of the system (40) and

g_ is indefinite on a closed surface, where we define g [ _ _)] to be

indef{nite on a closed surface if g(O) = 0 and g(u)/u > 0 .(The equation

g (_ 0 defimes a closed, bounded surface.)

The case in which the system is locally stable, equation (42), has been

previously studied by the author and is discussed in another section of this

report. In this section, we will discuss the case in which _ is definite

on the trajectories of system (40). For stability, not asymptotic stability,

_ may be zero on the trajectories of the system. Thus, equation (41) is

a partial differential equation analogous to those of Zubov.

Szego assumes that _)r in (41) can be replaced by XTA(X ) where

the elements of At) are of the form

aij _ aij (xi, xj). (43)

Sze_ invokes the theorem which states that "a necessary and a locally suffi-

cient condition for XTA _ to satisfy the equation

is that the matrix

D_C = xj

(44)
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be symmetric." The symmetry of D_ places the following restrictions on

aij (xi,xj) + xi _aij (xi ,x_ )

-_ xi

= aji (xi,x j) + xj _ aji(xi,xi)

xj

From equations (41), (43), (44), (45) and (46)_ the gradient of V can be

determined° By the usual llne integration techniques we can obtain V_; for

example, in the second order system V is given by

v_-- J I xlall(xl) + x2al2(Xl,X 2) _ IXl +_l(X2) ,

or

where _ land _ 2are arbitrary functions. It is possible that for some third

some third and fourth order systems the problem may have to be formulated

in such a way that more than one unknown matrix must be determined. This

problem is briefly discussed in [9].

In order to construct the matrix A_) which satisfies

_ _, consider the equation:_ _ET A _
we

C_)= _ A_ £_) = o.

The solutions of (48) define surfaces in the Euclidean space. In order that

) be definite on the trajectories of the system, it must not change sign

across these surfaces. Assuming continuity of /_, these surfaces correspond

to roots of even order of multiplicity of the equation (48).

Therefore, to construct the matrix A_ we solve (48) with respect to one

of the components of _, say x i, and require that real roots of this equation

have even order of multiplicity. Geometrically speaking, we require that the

(46)

(47)

(48)
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matrix A_) to be such that even numbers of surfaces, solutions of (48),

coincide. This fact is illustrated for a third order system in the compendium

- of examples. A concluding remark is that the above method for generating

Liapunov functions is very similar to the Variable Gradient Method.

We now will discuss Sze_o's work which is presented in references [i0] and

This study is limited to the investigation of completely defined systems;

that is, given a control system we wish to determine the stability properties

of the equilibrium point. (This, of course, is really our concern in this

whole report.) Szego claims that the method presented below will work as long

as the Liapunov functions belong to the class of functions which are solutions

of a generalized Zubov partial differential equation.

Given the nonlinear autonomous dynamic system in equation (40), the

problem of stability analysis of _ = O is then formally reduced to the

search for a positive definite scalar function _(_ and a scalar function

v _ v _) ,v "O_ O, such that the partial differential equation

is satisfied. The inverse stability theorems guarantee that such scalar

functions_ and v_ exist. But, it is not always practical to search

for a positive definite /_. Therefore, a more sensible approach is that

of finding a sufficient condition which guarantees the existence of a_ which

is at least positive definite on the trajectories of (40). Szego's method

gives a procedure to determine _and v such that (49) is satisfied. In the

following paragraphs we discuss the "highlights" of Szego's method as presented

in reference _0].

First, we consider a scalar function Vl_ , Vl_ = 0 ; its time derivative

with respect to equation (40) is

(49)
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Next we look for a _ which is definite on the trajectories of (40) and

a scalar function_(vl), _#(s) _ s _ _ , such that

o

: @(Vll•

Thus, the differential equation

Jo (Vl) - :  (Vl)
=[. v I _"_)

can be integrated. The solution of (52) is given as ol -= c< i_/%) _ o_*(x)

and the corresponding time derivative is

dv 1

dv I

e,A'

Therefore,_(_) is definite on the trajectories of (40); and because of

the assumptions made aboutCK.(Vl_ and Vl_ , o_ solves the stabilitll

problem.

Combining equations (50) and (51) gives us the following generalized

Zubov equation, compare (54) with equation (19):

$I - _Vl)_:_f_) : _ •
-- @ (Vl)

The stability results obtained from (54) are summarized in Theorems I and 2.

Theorem I

'_fhe stability theory of x = 0 of (40) is reduced to finding the scalar

functions Vl_ ,_ and _(Vl) such that Vl_= 0 , fVl _ (s) ds < oO

o

and_ is definite on the trajectories of (40)." :

(50)

(51)

(52)

(53)

(5_)
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Theorem 2

'h_he solution x = _0 of (40) is asymptotically stable in a closed, bounded

region S, o_ __ _ , f > O, if there exist scalar functions vI_, _ and

_(v I) satisfying the conditions:

(i) vi(0)= 0

(ii) _ is negative definite on the trajectories of (40),

vIP

(iii) / @ (s) de

Uo
-- _(v I) < oo

v I

" Jo(iv) _< C_ = =<(v,) = @ (s)ds

=< o(_= 0

and

(v) equation (54) is satisfied."

>o inS,__# O_,

Corollary i

'_Ehe solution _ = 0 of (40) is asymptotically stable in the large if all

the conditions of Theorem 2 are satisfied and

I1"-I1-,.
_o vl= Li= @(s) ds = o0."

Corollary 2

'qf all the conditions of Theorem 2 are satisfied with the sign of _

changed, then _ = O of (40) is completely unstable."
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We now consider a simplified procedure for constructing Liapunov functions.

We seek a scalar function v 2 = v 2 _ , v 2 _ = 0 , such that

_2 = (_v2)"T --f(-_-')= _ (v2)' (55)

where @ = O(V2) is a bounded scalar function.

semldeflnlte _(v2 x_) -- _(x)

do<2(v2) = _(v2) --

dr 2 _ (v 2)

Thus, we can find a

such that

2(v2) ,

(56)

is integrable. The solution of (56) is_2(v2) =oi'2 (_)

and the corresponding time derivative is

2 = _F )r f _) = _j (x) ,

where _ is semidefinite. If no degeneracy occurs, _ = O

when x _ 0__ , and if

(57)

(58)

then_ (_) is a Liapunov function of (40). Szego proves the

following existence theorem for the solutions of (55), a similar one is

possible for (54).

Theorem 3

"There always exists a scalar function _(v2) such that (55) has a solu-

tion which satisfies v 2 _) = O. In particular if (40) is asymptotically

stable, v2_ ) is definite and _(v2_ may be chosen so that

(v2) = _v 2 , Re (%) < 0

Remark

The major difference between (54) and (55) is that the Liapunov function

derived from (54) is never degenerate while the one from (55) may be

degenerate.
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In conclusion, we observe that the essence of Szeg'o's method is the

int_eductlon of the functions _(Vl) and _(v2) respectively in (54) and (55).

The important consideration is to find a scalar function v = v _, v_ = O,

such that V has the form _)_(v) or _/_(v) , but otherwise is arbitrary.

Thus, we are constructing a Liapunov function by solving a quasi-llnear partial

differential equation, (54)and (55), whose right hand side has a well-defined

form.

Chan_e of Variable

Szeg_ considers a change of variable, Z for _, such that one component

of Z is the scalar function v. The aim of the transformation is that by using

the well-deflned form of the right sides of (54) and (55) the stability problem

can be reduced to a search for a scalar function _ -- f (_) , satisfying

satisfying a certain nonlinear partial differential equation. The right hand

side of this partial differential equation is any definite function which

depends on only one component of Z.

The results of this transformation applied to (54) and (55) are

respectively (59) and (60):

x i =_

xi= _i

f

where

j=l _j fJ

xi --_i

_K"XK, K _ i and • i= VV"i

= _(_),j _ 1

(59)

(6O)
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Therefore, the only requirement we have is that the right-hand side of (60)

depends on w_. Whatever the function _(_u'2) is, we always are able to give

some information about the stability of the system; that is, we can either

determine the stability of _ = O, or we can determine the stability of

some first integral of the system going through the origin. Usually the

solution of the above partial differential equation is difficult; therefore,

  proao .c oo, o 0
LJ L.

a more

with unknown coefficients. Then the unknown coefficLents are computed in

such a way that the right-side of (60) is a function of w 2 only. S_eg_ gives

no general method to get _ *i" An example of this problen_ is given at the

end of this section.

In reference [ii] , Szego discusses some extensions of his work in [I0]

by considering some of the structural aspects of the stability investigation of

system (40). The results of this work are summarized in the following theorem

which gives the stability properties of a manifold, M, in Euclidean space.

Theorem 4

(1)

in the whole space En,

(ii) _ (v) is a continuous scalar function,

(iii) M is a manifold on which v(_) = O,

(iv) _ (v(_)) e 0 at all points of M, _# 0

(v) the equation

i_ _) = - O(v)

Consider the dynamical system given by equation (40). If

v_) is a continuous scalar function with continuous first partials

for x not in M,

is satisfied in En,



°

(vl)

(vii)

stable,

(viii) (n a( e _' M))

(n) a( _, M))
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the trivial solution, v _ O, of v = --O(v) is globally asymptotically

Iv(x)I

where _ (x, M) is the Euclidean distance of the point _ from the set M,

a(r) and b(r) are positive definite scalar functions, and a(r) satisfies

Lira a(r) = c_

r-_

then, if (Z) is satisfied,
Lira _e _(t), M)t-.._

= 0 for all initial

conditions; and if (II) is satisfied, M is globally asymptotically stable.

Remarks

We conclude this section with a few remarks about the special cases of the

above theorem. (i) If M is a minimal set containing the equilibrium

point _ = O, ac__--Tte+_ _te_ _I_-, -_ w _.l_q ,=vmn_nr_ _ _t_h_]_tv Of X = Oo

(2) If n = 2 and M is a closed, bounded curve not containing _ = O, M corre-

sponds to a periodic motion. If M is unbounded, then either all its points

are equilibrium points or M corresponds to a singular solution. (3) Similar

results are obtained if n = 3. (4) The stability problem of (40) is reduced

to the identification of M, and thus reduced to a problem of dimension of

at most n-l, the dimension of M. (5) Examples of this work are given in the

compendium.
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COMPE_TUMOF EXhaLES

Example 1, [1_ Second Order Case

The defining equations of the system are

x = -x + 2x 2 y ,

The partial differential equation of Zubov which defines the V-functlon is

___Xv _v
_x (- x + 2x 2 y) + _---_ (-y)=- / _ (I - V)

where _ is taken to be / s x2 + y2 . By direct substitution, one can

verify that a solution of this equation is given by the foilowing:

2I" X •

V(x,y) = 1 - exp y 2 - 2(1 xy)

As _y ----_ i', V ---_ i" • Thus, the curve xy = I forms the boundary of the

region of stability about (0, 0). That is, for every initial point (Xo, Yo) such

such that xo Yo < i, the subsequent motion defined by the above system approaches

(0, O) as t-_oO.

Example 2, [i] Second Order Case

The system is defined by

2/3 1/3 5/3 2/3
= fD(x_) = -3x + 3a(x/a) (y/_ + 3a(x/a) ÷ 3x (ylb)

2/3 1/3 5/3 2/3

= f2(x,y) _ -3y + 3b (y/b) (x/a) + 3b(y/b) + 3y(x/a)

The V-function is obtained from the following partial differential equation:

____V _V { 2/3 2/3_x fl (x,y) + _ y f_ (x,y) = - 2 _ (x/a) + (y/b)

where _ > O. The continuous solution of this equation satisfying

(l-V)



V(O,O) = 0 is given by

2/3C
_V(x,y) -- i - _ i - (x/a)
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from which it follows that the integral curve, bounding the region of

stability, is defined by

213 213

<x/a) + (y/b) = X.

The V-functlon in this case is not everywhere dlfferentiable, but V is

continuous in the region of asymptotic stability. The family of sections

of the reglon of asymptotic stability is given by

1 - (x/a) - (y/b) = _ ; o < X < 1o

Example 3, [I] Second Order Case

The following system has a rest point at (1, 0):

• x 2 y2)2 xx-- (I - + + xy,
2

(x + 1)2 + y

= I - x2 + y2 _ 4yx2 .

2 (x+l)2 + y2

The corrlsponding partial differential equation has the form

[ _z - x2 + _) 2x(x+l)Z + y_

+ ----_V_i - x2 + y2 _ 4yx 2_}y 2 (_+1)2

By substitution, one can verlfythat

V=

+xy_ +

+ y21 = _

_[(x,l) 2 +y2
2

L(x+l) 2 +y

2 (x-l)2 +_(x+l)2 +
(i - v) .

is a continuous function which satisfies the above partial differential

equation and the condition V(l, O) = O. From V = i, we obtain the boundary
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of the region of asymptotic stability for the rest point (I, 0). This boundary

is the y-axis and the region of asymptotic stability is the right half plane.

The equation for the family of cross sections which fill the region of asymptotic

stability are obtained from the equation

V(x,y) = i

The sections are circular, defined by:

- A, 0_ _<i

2

y2 1 - I.

Examvle 4, FI] Second Order System

In this example, we consider the system

= _<x) + _Cy) ,

9 = _ (x),

where the right sides of the equations are specified for any x and y and

satisfy the sufficient conditions that guarantee the existence of the unique

solution x (t, Xo, Yo) and y (t, _e, Y_) for all

finite values xo and Yo, and having a unique rest point at x = y = O. We also

assume that S(x) and _(x) have signs opposite to the signs of x, and that

6"(y) has the same sign as yo

The defining partial differential equation for V is given by

In this case the _ (x,y) function which is used is given by

--;<x)s (x) ,fromwhichitfoll_sthat/(O,y>= 0

any y.

of }

for

It can be shown that Zubov's theory still is valid for this choice
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The function defined by

Isx s' )V(x,y)= I - exp _ (_)d_ - _ (_)aT

o o

is the solution of the above partial differential equation.

jxintegrals, _9 (_) d_ and

o

If the

o-- (I:) d_ tend to infinity as

, then (0, 0) is asymptotically

stable over the entire space.

Example 5 [I] th
, . D[--0rder System

The following nt-_horder system is an example of Theorem 3, under

Zubov's work:

where P is a constant n-by-n matrix whose elgenvalues all have negative real

pa_ts. The problem is to find out for which functions _ the trivial

solution _ = O o_ _zhe above system is Uym_totlcally stable on the whole.

First, for the linear system_ = i _ we conmtruct the following V - function,

given as a positlve_efinlte quadratic form

v=_rA _,

and

where B is negative definite.

A _ Constant,

=w_) :W _B __,

_B:_Z.A + _P A_,

Next, we construct the function R__:
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xi

= _ o<w ° I_-- aik xk i + aik
K=I =

where _= _ and -L < o_ < L < i

27%

then the trivial solution of the system

• If

is as_mptotically

stable on the whole. A further note can be made; that is, if the functions

fi _ are expanded in series, then the last inequality gives an estimate

of the coefficients of these series in terms of the arbitrary quantities

blk and in terms of the coefficients, Pik ' of t_e linear system.

Example 6, [3] Second Order System

We consider the following system, which was originally studied by Zubov:

x I -- -x I

x2 = xI

+r x 2 + Xl(X _ , + X22) ,

2 2
- x 2 + x2(x I + x 2 )-

(Xn the next example, (7), we will consider this system with persist_n:t d!s#_urh '_"

ances added to the right-halves of the equatlons•)

In equation (19), under Zubov's work, we let / " 2 (X2 + x2 );

that is

_Vl _Vl

_-7_-_+_ +_ [_ +_J _ +_x-7_-_-x_+_ [_ +J_ >=
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Assume that
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2 2
V 1 = ax I + bXlX 2 + cx 2 •

Substituting V I into the partial differential equation gives the following:

2 2
a = c = I and b = O. Thus, V I = Xl; + x 2

V1 =-2 (x 2 + x2 )(I- x 2 -x22), Therefore when V 1

and

._ x 1 + x < 1,

V 1

VI _ 0 ; when V I_- x 2 + x22 =.

•= _ and w.hen V I - x + x • I, V 1 > 0 . Thus, the

boundar_of _hereSionof asy.p_otic,t.mity i, _2 + _2 . 1

Example 7, [I] Another Application Of '_heorem 3"

We consider the second order casedefined by

= - x + y+,x (x 2 + y2) + _ (x,y),

" -x,- y + y (x 2 + y2) + r_(x ' y>.

The "first approximation" of the system obtained by discarding the functions

2
_(x, y) and _(x,y) has a limit cycle x2 + y = i, example 6. The

Liapunov function for this "first order" system is chosen to be

V = - _n .(_ - x 2 _ y2_, ,

= - 2 (x 2 + y2) .

We let

or

E(x,y) = (x 2 + y2) 1 + +

2 x2 y2) -iRCx,Y) = (x 2 + y2)(1 - x - y2)(1 + + .

Then, if

,x,y,I ,
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the original system also has a limit cycle. It should be noted that any

other R(x,y) satisfying the conditions of Theorem 3, in Zubov's work, could

have been used.

Example 8_ [11 Example of Theorem 5

We consider the curve S (x, y) = O, which is the boundary of a region A: (0, O)

belongs to the closure of A and S (x, _) < 0 for (x, y)belonging to A.

If S(O, O) _ 0 , we then assume that S (0, O) - - 1. The general

form of the systems, for which the curve S (x, y)= 0 is an integral curve,

was derived by Erugin, namely:

= fl {x,y,s)- ___ssMCx,y_ ,
_y

= _s M(x,y) + f2 (x,y,s),
_x

where M is any continuous function, and fl = f2 " 0 when S -- O. We separate

from this set of systems the class, for which (0, 0) is asymptotically

stable, and the curve S (x, y) = 0 serves as the boundary of the region of

asymptotic stability.

For this purpose, define the following:

where

M(x, y) =- _(x, y) w (x,y)

fl(x,y,S) = S(x,y) I - _(x,y) _--_ + S (x,y) _ (x,y) d l(x,y)

_x

_(0,0) =w (0,0)= _X/(o,o)
= 0 .



°
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The functions _ and W are positive definite over the entire plane; the

function _ is an arbitrary continuously-differentiable function; and the

functions d I (x, y) and d2(x, y) satisfy the relation

dl(X, y> S(x, y> --_ d2<x, y> S <x, y> _y

but otherwise are arbitrary continuously-dlfferentiable functions. Also, the

functions S and %/ are contlnuously-dlfferentlable for all values of x and y.

We now consider the equation

.- o. .
This equation has a unique continuous _olu_ion, defined by the condition

1 -V = exp S(x, Y(0, O) =0 .

Thus by Zuboves theorems, it has been shown that the system derived by Erugin is

asymptotically stable and the curve S (x, y) = 0 is the boundary of the region

of asymptotic stability. Any solution of this system be@_.n_.o _. eh .... _- _f

asymptotic stability is contlnuable to the seml-axis t belonging to (-_, O) if

is bounded.

Exampl e 9, [1, 2B ,Stabilit y .of a P ertod,ic 8olution

From reference [i], Zubov considered the system.

= x + y - x (x2 + y2) _ fl(x ' y),

= - x + y - y (x 2 + y2) _ f2(x ' y).
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We let

2 _ 2 2(x,y) l+fl + f =2 (1- x .y2_ .

Thus, the partial differential equation corresponding to the system is given

by the followlng_

x fl(x,y) + "_y

2 - 2
-- (l -v) 2 ($-x -y2)

The function V which satisfies tb/s partial differential equation is

where V "0 when x 2 + y2

V = 1 . (x2 + y2) exp _1 . x2 . Y2_ ,

= i. Therefore, the circle x 2 + y2 = i is a periodic

integral curve° From Theorem 7 in the£axt of this section it follows that the region

of asymptotic stability of the periodic solution is the entire plane with the

exception of x2 + y2 m i and the origin. The origin is unstable as one may

see from the linear approximation

x=x + y

_=-X + y ,

whose eigenvalues are IT i.

In reference [2], Zubov considers practically the same system, except

he extends it to three dimensional phase space. The system is defined by

= x + y-x(x 2 + y2),

= - x +:y - y(x 2 + y2) ,

= - _ .

This system has a periodic motion located in the plane Z = 0 and describing

2 2
a circle of unit radius x + y = i. The partial differential equation

for V is given by the following:



- 47 -

"_'_ +y - x (x 2 + y2) + _'--_" -x + y - y (x 2

" _---_E = " f 2( I + x2 +y2)(1 .x 2_ _ y2) 2x 2 "4- y2

+ y2)_ +

+2 _- (l -rE.

This equation differs from the second order case 8ivan above, because of the choice

of /. Also, in this case Zubov makes the fallow£n8 substitution:

vI - - _._ (1 - v) ,

giving the following partial differential equation,

+ '_y x+y - y (x 2 +y2)x (.x+y-x (x2+y2)

The solution o£ this equation is 8ivan by

[1 - (_x2 . + v2)] 2

V l - x 2 + y2 + ._2.

+

V1 is defined at all points £n the phase space except on (0, 0, Z), that is,
2 2

the Z-axis; and V! is gero on x + y - i, Z - O. Consequently, the periodic

solution of the third order system is a self-oscillation, the region of

attraction of which coincid_s with the whole phase space, excluding the Z-axis.

Example 10, _4_

The system is defined by

Second Order Example of Equation (35)

x = - 2x + 2y 4

/
24(x 2Let in equation (35) be given as

differential equation for V. is

+ y2). The linear partial
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"_V.._. (_ 2x + 2y 4) + "_V*" (-y) = -24 (x 2 + y2) .

The solution of this equation can be obtained by the standard techniques of solving

Lagrange linear partial differential equations.

V. = 6x2

stable.

Example II, _. 8_

Thus, we have that

+ 12y2 + 4xy4 + y8 . V. _ oO as

; therefore, the above system is globally asymptotically

Rough Systems of Chetaey

This example is concerned with systems which N.G. Chetaev called

"Rough Systems", A rough system is a nonlinearsystem for which the problem

of stability can be solved correctly by fairly simple approximate methods.

The most interestin 8 of such systems are those for which the problem of the

stability of motion reduces to the consideration of linear equations with

constant coefficients; these will be considered here. The reason for in-

cluding this example in this section is because the V-functlon for the

linear approximation is obtained from a partial differential equation of the

type found in the text of this section, that is, equation (35)°

Consider the following system of equations: ....

where C is a constant matrix and the elements of F are bounded real functions

2 2
_- A and t _.. tOoof t, _ for X1 + . . o + X n --

The auxiliary system of equations is

x = c x

where the eigenvalues of C, k K' satisfy the following condition: for

arbitrary non-negative integers MK, M 1 _ + . . + M fl _ _ _ 0

when M1 + . . + Mn = 2. Based on this assumption and a known theorem of
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Liapunov, the partlal differential equation

(Cslxl +. • • +Csn x.) =- (x + • . • +Zn)- u_)

determines uniquely the following syn_etric quadratic form with constant

coefficients, ash '

n n

v-zl2 Z Z asr Xs Xr.
S=I r=l

For sufficiently small values of the parameters 6>0, and A > 0

and for a small _ > O, the time derivative V by virtue of the equation

= _ + _ _ _, satisfies

2 2 ) _ - x _CT A + 6 FTA + A c +- -H(xz +... +xn ....

+/../_.z'_ _x = _xT __ x >o, forx_x >o.

_x_ F_+

Therefore under certain conditions, the asymptotic stability or instability

of the undisturbed motion ( x = O) of system_ m _ _ correeponds exactly

with the asymptotic stabl]_y and _-_-_ ............. _u...Ly of the corresponding nonlinear

system• The quantities 6 and A, for which there uncondltlonally exists such

a correspondence, are determined from the n inequalities

hll • . . hlp

• . > o_ (p _ l, 2, . . o , n>

• • •

of Sylvester's _heorem, where H = [hljland _ is sufficiently small.

The bounds for A and _ determined by the above inequalities can be made

more precise if in the above partial differential equation one considers in
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some other negative-definite form U(_)

with real coefficients. This fact was also pointed out in the _ of this

section.

One can give an estimate of the bounds of the largest and smallest

deviations of the disturbed variables. For this purpose we consider the

I

extremal values of the derivative V on thesurface V - C, Fromthe above

e

equations, V can be written as

@

-(IZT_C x_) + _ wz__x

=-_xZ_x + _WT._- _x --1/2 __S _x .

A result of this work is the following estimate:

x Tx _ c_=_ exp ( + ) t ,'

This inequality gives the square of the radius of the sphere into which at

the instant t the point in the perturbed motion _(t_ will enter if its initial

value was X_o)T x_) = C for to = O, remembering t > to. The quantities K I and Kn

/

denote the largest and smallest eigenvalues of A in V q i/2_x_A _. Also _ is a

_u_fi_i_utly small positive constant and _ / is the largest root of the

equation

= O.

Example 12, [9] Homogeneous Atomic Reactor Equation

The reactor equations describing a homogeneous atomic reactor with

constant power extraction can be written in the following form:

•- 1 l) -_-f(e#.
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" a21"_" _2 + ',a12 ._ lf(_l ) +

is"evident that by choosing ,, ,,,It

(_ .in b.. ide,t_.ny. ,e,o.. "," ,'_

'. ....... i' , , ,',, '.,

i

t_kes the form:

, J

2_: i_l ' _ 2
-_ f(s)ds+ 2V B_

O

7:1 ,
-- 2.Tq (e_- :1ds

0

The integrability condition_'whfch'_mSt, be,'s#tlsfied by the elements of

'A ar,e :..

:'_ ('_'5>+_'_ " ,'t_<_,_J_+__.
'_:i'., '

As v_.._...._.ea-_i!y see, -A saris fids 'these _,ond__+_ns.o

For second order systems; the V-functlon has the form

where :i and arbitrary functions.: Therefore, if we let a22 = 2, we have
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which is a positive definite scalar function if > O and

_i >/ O • We conclude that the trivial solution _I = _2 = O

is stable for =K, 6 , "I_ > 0

Example 13_ E9] Third OzMer System

Let us consider the third order system of Ingwerson, analyzed here

by the Zubov-Szego Method, given by the equations

Xl = x2

_2 = x3

_3 " " (Xl +b x2)3 - Cx 3 - f(_)°

The correspondlng_ function is

= (all x I + a21 x 2 + a31 x3 ) x2 + (a12 x 1

+ (a13 x I + a23 x2 + a33 x3) f_.

This scalar function is made definite on the trajectories of the system by

requiring the dlscrlminant of the equation_ = O with respect to X 3

be identically zero. This yields the following two equations:

+ a22x 2 + a32 x3) x 3

tO

+

2 bx2)3 bx2)3all XlX 2 + a21 x2 -- a13 Xl(X I + -- a23 x2(x I + = O,

3

a31 x2 + a12 Xl + a22 x2 -- a33 (xI + bx 2) -- C(al3 x I + a23 x2) =

If we set a13 = a31 = 0 and a23 = a32 = I, then the first of these

+ 3b 2 XlX 2 + b3 x2 .

two equations gives

2

all = all (x) = Xl,

a21 = a21(Xl, x2) = 3bx_

O*
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a12 + _ xI

which when integrated yields

-53 -

ffi a21

a12 ,ffi 3b 3 x 2 + 3b 2 XlX 2 + bx 2.

From the second equation, obtained by settin8 the discriminant of x 3 equal

to zero, we obtain the followin E faults after substituting for a3i, a12,

a13 and a23|_

. b 4 2
a33 ffi b and a22 X2 + C .

Thus, the matrix _A(x) becomes

2
Xl

i

363x +362xlx2÷ o

3bx 2 + 3b2xlx 2 + b3x_ b4 x 2 + C 1

0 1 b

A/'_ in a manner °4m_la" e_ exam_!e (IP) gives the followin2Integrating_T_%e j ..............

for V:

v(a) = !
4

Ix I + bx2_ _ + _i [cx 2 + 2x2x 3 + bx32J
2 L 2

where

• 2
V = x 3 (I - bc).

From V and V, it follows that the trivial solution _ = O of the above third

order system is asymptotically stable for b, c > O and bc - i > O.

Example 14, [iO] Second Order System

We consider the second order case given by

x =y ,

= -ay -ax 3 - x 2 y



The choice for vI in the equation

;'z
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The time derivative of v I is

Thus, if we choose

is vl = ax + y

. 2
v I = a_ + _ =- x v1

2 2 2 y)2_(x_ = - X V I " " X (ax + , then

(Vl)" V I. Since x " 0 and y _ O, and y =- ax _ 0

are not solutions of the system, then _) is nesatlve definite on the

trajectories. The integral of _ (vI) is bounded and nonnegatlve if v 1

is finite, and the integral is unbounded if _ is unbounded. Therefore,

by SzeS_'s Theorem, the equilibrium solution (0, 0) is asymptotically

stable.

Zxamle 15. _10_

Consider the system

Second Order System

_ m y,

, 2 3
y = ax + ax y - y

a > O.

In this case, choose v _ y2.
I

_i = 2axx - 2 y y = 2y 2 (I - v I) o Now, if

(x) = 2y 2 (i - Vl )2 , then _ (vI) = i - v I.

= ax 2

-y,

Thus,

(s) ds = v I_i (vl) = _ovl

The time derivative is

where

O_* (_) = (ax 2 . y2) __ 1/2 (ax 2 -- y2) 2 ,
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and g<*_) =2y 2 (i -v l)

Since _ is positive semidefinite and o_ is indefinite, then

x = y = 0 is unstable.

_xample 16,[iO_ ii] Second Order System

This example shows the advantage of Szeg_'s change of variable technique.

The characteristic system for the second order case is

fl(_, Y) " ay f2 (_, Y - S(_) .

The system which we consider is

3
" fl (x,y) -y - _,

Q

y = f2(x,y) - x -- 1/2 y.

Substituting fl and f2 into the characteristic system gives

f y3 . _ . "_ f (___ 1/2 Y) I

"3

.3

, _(o, o)

Thus, we let

We will assume the form of _ : _ (y,_r)

and substitute into the above equation.

where f (0) = O, but f(y) is otherwise undetermined.

.- _(_v) .

= O

The characteristic system

becomes

Y 3/ co" + f
a

-ZuJ- - 2f - af' /_r+ f
+

+ 112 yf' = _(_r).

Using S_eg_'s Theorems as a guideline, we choose _ (ux) = - 2_r.

If we also choose f(y) such that

-- 2f + (yl2)f' = O,
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and

then we have f(y) ffi _ y4 and a2

namely, _ ffi (1/qC'2)/u,x" + y4 .

w'ffi v and _ = x, then we have

2Y_a -- af' = O,

= 1/2. This gives us _,

If we now go back to the usual form,

v = 2x 2 . y4

whe re

- - --
Thus, we conclude that the solution, 2x 2 - y4 - O, is globally asymptotically

stable.

In reference _, 2x 2 _ y4 ffi0 is shown to be a singular solution of the

second order system given in the above discussion. This can be verified if we

write the system in the followlng form:

d.._xx ,, 2y 3 - 2x

dy 2x - y

where if u ffix/y 2 , then

du = 2 - 4u 2

dy 2uy - I

2x 2 4We observe that du = 0 when u = 1/2, that is, when - y = O.

dy

The equilibrium points of the system are contained in the solution

4
curve, 2x 2 - y = O. In particular, the equilibrium points are

(_.X = O, _ _'/4_ and y = O,

andtheylie onthebranchof thesolutioncu_egivenbyy l Yl =
The linear approximations of the system in the neighborhood of the

equilibrium points, are
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m -_X

:_; -- .1/2 y ,+ :, for (0, O) ,

_-- cx ; _/4> + 3/2 (y ; ,/3/2)

T_s, from linear stabtl:lt-y thQo#] w@ can s_ ghat the orlSin il a stable node mnd

_he oth_r equilibrium points ar$ _addl:e poi_$,

x - ÷ _/-2/4.

e

y .- ±_/2

A re_ton of as_ptotie tta_t$ttyaroued (Oj O) can be obt-ataed tf ve con.taler

the Lia_lnov fUnction-V _ i/2(# 2 +'y2) i Wholle d@rlva_ivo alO_ t-he eraject.orieB

of _he _yst_u_ :i:s_,_ _

x2 3- - 1/2 - l/= (x - y)2 + x y .
r_

Zn tl_ rmlton ,Jb L

therefore, all solutions be$1nnln$ In

t V ,,' t/2(x 2 + y2) < 0.295, V > 0 and Y < O;

tend _oward _he origin as

Exam_!e _ r!!_ vh_d Ordar Case

Consider _he system

Xl " x2

x2 = x 3

x3 = - x I - x2 - x3 +6(1 - Xl 2 - 2xlx2)x 2

+ _ (i - x12 ) x$ , 6 > 0

Let a scalar function v be defined by

" - x I ÷ 6 x2 - _x_ x2 -V
X3

+

where the total time derivative along the trajectories of the system Is

. 12v ffi x 1 -_x 2 + 6x x2 + x 3 = - v .
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The conclusion is that the manifold M on which v i O,

M: x3 = - x I + 6 x2
2

- _ x I x 2

is asymptotically stable. If this equation for M is substituted into the

system equations, the third equation, _3 = f3_' becomes an identity and

the familiar van der Pol equation is obtained:

Xl = x2

x2 = - x I + G x 2 -6x_ x2 .

Thus, we conclude that the only equilibrium point, _ = O, of the system

is unstable. But, the system has one asymptotically stable orbit which lies

on the surface _ M)and that orbit is defined by the Van der Pol's equation.
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BOUNDEDNESSAND DIFFERENTIAL INEQUALITIES

SUMMARY

In this section we discuss the boundedness of solutions of differential equations.

Boundedness properties are used in the formulation of uniqueness and existence theorems

and in stability studies. The work of Bellman and Yoshizawa make up the major part

of the discussion in this section, although examples are taken from the works of many

other authors.

The application of differential inequalities is discussed since this topic is

certainly strongly related to Liapunov theory. Methods for determining boundedness,

other than differential inequalities, are the monotonicity of the coefficients and the

method of successive approximations.

INTRODUCTION

We will first define many of the terms used by Yoshizawa and give examples to

prove that the definitions are no___tequivalent or redundant° Next, we will discuss

in detail the work on boundedness due to Yoshizawa. _^_**_n,we will de.............._ _h_ work

_- _## ..... _i _...... I_ ....._ _° p_=_ly d,_ to Bellman. Finally_ we give

many examples of "boundedness" problems studied by various authors.

Definitions of Yoshizawa [9]

We consider the system defined by

=

where _ is an n-vector in E n and F is a given vector field, defined and continuous

in the domain:

_: 0 _ t _ _ , |I _II /_ cO.

A solution of (*) passing through the initial point (to, _o ) is denoted by

x* = x (% ; Xo , to ).

(*)

(**)



(a)

positive number B such that [[ _x* I[

upon both-_o and to , B =_. B(x o, to_.

(b) The solutions issuing from the point, defined by t

- 2 -

The following terms are used in the work of Yoshizawa.

A solution x* issuing from (to, _o )is said to be bounded if there exists a

< B for t >i to . This number depends

= to, (_Xo, to ) to the right

are said to be equibounded, if for I_o _ _c_ , the B in (a) depends only on C_

and to, B =__ B(_ t O)o

(c) The solutions are said to be uniformly bounded if for each_ o, B is determined only

by oc , B m B(o_).

(d) For the solution_x* issuing from (to, _o ) to the right, if there exist positive

numbers B and T such that _I _x*_l < B for t _ to + T, the solutions of (*)

are said to be ultimately bounded. B is independent of the particular solution while T

may depend upon the solution. (Here 4 o is arbitrary).

(e) The solutions issuing from t = to are said to be equi-ultimately bounded if for

_I/_o_I _-_cK , T in (d) is dependent only on _ and to

(f) The solutions are said to be uniformly ultimately bounded if for every to, T is

dependent only on C_.

(g) The solutions of (*) are said to be totally bounded (or bounded under constantly

acting perturbations), if for any o_>O, there exist two positive numbers A and B

such that if

solution of

I/-_o II _.o_,, then Jl_x* l_ B. This solution x* is now defined as the
m

@

x = F (t, x) + H(t, x)

where H is a constantly acting perturbation, to is arbitrary, and t _ to . The H -

II (t,x) ll < A ,

function must satisfy

whenever _ < II _ [I < B.



The relationships and implications between the various types of boundednesswill be

presented in "theorem-form" in the subsection devoted to the 'Work of Yoshizawa". The

following examples indicate that the above definitions are not equivalent or redundant°

Examples [9]

Consider the following system in polar coordinates:

where

r =' g (t,_) r , _ = O ,

4

g(t,_) = (l+t) sin e i o I

4 2 2 + 4 2

sing + (l-t sine) i + sin G i + t

The general solution of this system is

If e o

r = g(t,@ O) ro, _ = 8o.

=_TF, the solution becomes

and if_ o

r = ro , _ = mT_ ;
2

i + t

m 11" (man integer), the solution is

r = ro _ I + t
1 +(t- _) 2

o,

where # = I/sin2_o.

+ +2 i ]+# 2 " I + t2

Every solution is bounded; but if 6 o is very near mTF, the value of r can be

arbitrarily large whenever t = = ,:the actual value depending on _o.

sin2 _ o

Thus, the solutions are not equi-boundedo

Not__.__e

For linear systems, boundedness and equi-boundedness are equivalent; but the

solutions being equi-bounded does not imply uniformly bounded solutions, as the



following examplesdemonstrates.

(2) Let
CO

g(t) -- L 41

m = I i + m (t - m) 2

and consider the first order linear differential equation given by

x = g(t) x

The solution of this equation passing through (to, Xo) is

x = x° g(t) .... " _-
g(to )

If to is made sufficiently large, then g(t o ) is sufficiently small.

are no tuniformly bounded, even though the solutions are equi-bounded.

The next examples illustrate that equi-ultimate boundedness is not equivalent

to uniform ultimate boundedness.

(3) Consider the first order linear differential equation

x
o

x = - t + I

The general solution of this equation is given by

(to + i) xo ;

x = (t + I)

and hence for a posftfve number R, the solutions are clearly equi-ultimately bounded

(t > R), but no_._!tuniformly ultimately bounded.

(4) The solutions of_ = - x are clearly uniformly bounded, but they are not

ultimately bounded.

The following examples illustrate that boundedness and Liapunov stabflfty are

independent concepts.

(5) The solutions of the equation

X = 1 ,

Thus, the solutions

given by x = c + t, are obviously unbounded but stable in the sense of Liapunov.
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That is, a small change in the initial condi_ons produces only a small change in the

value of x for all future events.

(6) The solution of the equation

are of the form

x2 + $ x4 + 4 x2' ] x

x = c sin (c t + d ).

Thus, the solutions are bounded, but unstable because of the "C" coefficient of to

WORK OF YOSHIZAWA

Yoshlzawa has written extensively in the area of boundedness of solutions for

ordinary differential equations, _i] to [14]o The technique which he follows for

constructing existence, uniqueness and boundedness theorems depends on the construc-

tion of a V- function which is similar to the functions employed by Liapunov in his

work. (For this reason and because Jo LaSalle says that Yoshizawa's work holds the

"best promise" in the analysis of time-varying systems, we feel that the following

discussion has merit in this report°)

The motivation for the reasoning which Yoshizawa uses is presented in references

[I_ and [2] A concept which is very important in the development of Yoshizawa's

theory is called the total deviation, or the degree of closeness. For the first order

differential equation

dy = f (x, y) ,
dx

the total deviation is defined in the following way. Consider a curve y = g(x); then

the total deviation of this curve from the solution of (i) is given by

x

/xolg'(x) - f [ x, g(x)_ I dE .

(l)
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By making use of this concept, Yoshizawa is able tO construct existence and uniqueness

theorems for systems which may no__!teven have continuously differentiable rlght-sldes.

_2] , the following system of differential equations is considered:in

= F (x, , (2)

F =

where the fi are defined in a domain G. The domain G is defined by:

0 _ x <_. a ; I Yi_ _-- bi

and the fi satisfy the properties_

(i)

(ii)

(iii)

(i = I, ..°, n) ;

fi are Lebesgue measurable in x and are continuous in Yi ;

I f I _ Mi(x), where Mi(x ) are Lebesgue integnable over [0, a_ ;

Si(x) are the solutions passing through the point P (x p, y p) _ _-_ such

that the SL are defined in an interval I, Xp G I, Si(Xp) = Yip and

(x, Sl(X), ..., Sn(X)) G _-- for x & I ;

(iv) Si(x ) = Yip +fx fi[x, Si(x),...,Sn(x ) ] dx.

x
P

We will now consider a uniqueness theorem for the system in (2).

a V - function by using the above concept of total variation. Let

Q = (Xq , yq ) both be points in G such that Xp _. X q

Yoshizawa constructs

= (Xp , _p) and

_p, Xq] , and satisfy

y (Xp) - _p , y(Xq) = yq ,

where (x, ][(x)) 6 G for all x & [ Xp, xq].

We then denote by Npqthe family of all functions that are absolutely continuous in
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Thus, if y(x) Npq, then _(x) is sun_nable in _Xp, x

of P_ and Q as follows:

J •

Now define the function D(P,Q)

D (P, Q)

where if Xp

D(Q, e).

= inf __%
Pq

= x q, then D(P, Q) = II yp

- f (x, y)[I dx ,

- y_ q II , and if Xq _ Xp , then D(P, Q) =

Theorem I [ 2]

'The points P = (Xp, y_ and Q = (Xq , y q

of (2) if and only if D(P, Q) = 0."

) belonging to G lie on the same trajectory

Properties of D(P, Q)

(I) Let points P and Q belong to G, Xp< Xq , then for X(x) _ Npq we have:

11 _ - F (x, y)II dx _ I].y.q -yp II -

P

r 2 2 ._i/2

where ii M (x) ii = L MI (x) + ..o + I¢_ (x)J

II _M( )II dx ,

From this inequality we get

D(P, Q) _ II

x

/xq- II - j; __Cx)II
P

(2) Let points P, Q, R belong to G and let Xp ___ Xq __x r . Thus, we have

D(P, R) __ D(P, Q) + D(Q, R) ,

and

(3)

(4)

x
r

I D(P, Q) - D(P,-R) I __ll2f.q -2_.r I1 + II/x M(x) dx II "

q

(3) D(P, Q) >I 0 and continuous in P and Q.

(5)
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Definition of the V - function

Let V (x, _ = D E, Q) where P is the fixed point and Q is the point (x, _(X))o

Then in region G, V(x, _ is a nonnegative continuous function of x and X" This V-function

is now used in the following uniqueness theorem.

Theorem 2 (uniqueness theorem) E2]

"(H) If (i) fi in (2) satisfy fi(x, 0) = 0 for all i almost everywhere in [0, a% ;

(ii) fi(O, O) = O ,

(C) Then (2) has a unique solution if and only if there exists a V(x, y), defined

over G, such that

V(x, O_ = 0 for x _ [0, a] ,

V(x, y_) > 0 for y _- O_ ,

and

Iv(x, zl) - V(x , z 2) I _-U JlZl - z211 +

x2

+ / N(x) dx I'
X I

where L is some =onstant and N(x) is a non.egative su..._ble function in _0, a'_ .

Example i

The system is defined by

= t (x, z) ,

where F satisfies II[ (x, Z) II _ N(x) II Z _I " To prove uniqueness, it is sufficient

to choose V as

V (x, X) = exp { -2

X

2/0lJz II N<x0 dx .

this V satisfies all the conditions in theorem 2.
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In reference _3] , Yoshizawa discusses the nonincreaslng solutions of

y" = f (x, y, y')

and presents sufficient conditions for the solutions of (6) to be nonlncreasing

and tending to zero.

(6)

Theorem 3 [ 3"_

(H) If (i) f (x, y, w) is defined and continuous in the domain o _ x <

o _ y < o_, - O_ < w < oo,

(li) for every c > 0, there exists a continuous function V(x, y, w) = Vc(x,y,w)

for the domain _c : o _-_ x __ c, o _ y __. c, -k__w_o, and if V c has continuous

first partials in the interior of _c,

(iii) V (x, y, w) > 0 for w _ O, and V(x, y, O) = O,

(iv) in the interior of A c' V satisfies

V + _ V w + _V f (x, y, w) _ 0 ,

(v) y = y(x) is a solution of (6) on the interval 0 ___ a ___ x __. b

_La_ ng Lhe ...... conditions a _=j ,

iv,iN A _= _o domain n 4 v _ c, n _ y _ c, _ _ w >. O_ _.d

V (x, y, w) satisfies

__Iv +  __Xv w +  __Xv
6x _y %w

f (x, y, w) -'# 0

and y' (a) _ 0,

(C) Then hypotheses (i) and (v) imply that y'(x) >I 0 for [ a, b]

hypotheses (i) to (iv) and hypothesis (vi) imply that y'(x) •

The second theorem in [3] cites sufficient conditions for the existence of a

solution_f (6). The proof of the theorem is based on the construction of a

; and

0 for (a, b_.

(7)

(s)

V - function.
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If (i) f (x, y, w) is a continuous function in the domain R: 0 _ x _ oo,

0 __ y < oo, - oo < w < oo,

(ii) f (x, O, O) _ 0 for x 6 _0, 00) and f (x, y, O) _ O for x G ZO, 00>

and y G _0, O0) ,

(iii) for every c > O, there exists two functions V (x, y, w) = Vc (x, y, w) and

U(x, y, w) = U c (x, y, w) defined as follows:

(I) U and V are positive and continuous,

(2) U and V converge uniformly to zero as w _ - oo, in region

Rc: 0 _-- x <_ c, 0 ! )t __ c, w _ - k

(3) in the interior of Rc they have continuous first partials which

sat:isfy

5v +
_x

and

V w + )v f(x, y, w) _ 0 ,
_y )w

__.__U+ ___UU w + ___U f(x, y, w) _ O ,

_x %y _w

(_ Then, for every Yo > O, there exists at ].east one solution of (6) defined

[0, 00), satisfying the initial condition y(O) = Y0 , and satisfying the inequalities

y(x) _, 0 and y'<x) _ 0."

We now state the main result of reference 13] . This result was obtained

by making use of the previous theorems.

Theorem 5

(H) If (i)

(il)

[3-]

f(x, y, w) is a continuous function in R,

for every pair of constants cI and c 2 , o <. cI < c 2 , there exists

a positive continuous function V (y, w) in R* : c I _ y _ c 2 , w _-k,
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V has continuous first partial derivatives in the interior of R*,

converging uniformly to zero for c I _ y _ c2 and when w

V satisfies the following in the interior of R* and for 0

_.__V w + ___y_Vf (x, y, w) >I 0 ,
_y _w

for every pair of constants O _ a I <

continuous function U<x, y, w) in R: t _ x _ oo, aI _ y _ a 2 ,

-a2<_w <_ O,

U converges uniformly to zero for aI _ y _ a 2, - a2 _ w _ 0

when x _ oo,

in the interior of R, U has continuous first partial derivatives and

satisfies

a2 , there exists a positive

+ w + ;__iu
2y

(C1 Then, for any solution y = y(x) of (61 on 0

y'(x) _ O, we have iim y(x) = 0.

f (x, y, w) _ 0 ,

x < oo satisfying y(x) >I O and

In reference [5], Yoshizawa employs V - functions to give sufficient conditions

for the ultimate boundedness of solutions of a nonlinear differential equation.

He also derives sufficient conditions for a solution of the nonlinear system to

be periodic. The systems which he studies is given by

_=f(t, x, y)

i

y= g(t, x, Yl ,

where f and g are continuous in the domain,

Before we look at the boundedness of the solutions of (14), consider the following

lemmas.

(121

(13)

(14)
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Lemma I

'_et A I and BI be positive constants used to define domain U:

Ixl A1 , lYl B1.

Suppose there exists a V - function continuous over the domain &%2:

C
(x, y) _ u

conditions :

(1)

(2)

c
, where U is the complement of U.

(31

(4)

0 _ t

Let V satisfy the following

00_

V(x, y) > O,

V(x, y) ---_0, uniformly, for y and x respectively when x or y becomes

infinite,

V(x, y) satisfies locally the Lipshitz condition with respect to (x, y) in

the interior of /_ 2 ,

and in the interior of 2, we have

Lira hl--_o V(x + h.f(t,x,yl,y + hg (t,x,y) - V(x,y) _) >.h & > 0

where _ is arbitrarily small but a fixed positive number when x and y are

bounded.

Then for any solution of (141, x = x(t) and y = y(t), ¢x and /_ being arbitrary

positive numbers, if we have I x(.to) I _ , I Y(t°) I _- /_ at an arbitrary t = to ,

then there exist two positive numbers ['I and M i , depending only on _ and /3:,

such that I x(t)l <I, I and ly(t) l _ M 1 for t _ to "

Lemma 2

"Under the same assumptions as in Lemma i, let E be the domain Ix ] < A2 ' I Yl < B2

for the arbitrary constants satisfying A 2 > A I and [_a_> Bl" Then for any solution(x, y)

such that (x(to) , y (to)) 6 E U at t = to, we have (x(t), y(t)) 6_ U for some

t > to. "
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These lemmasthen led Yoshizawa to the following theorems.

Theorem 6 [5]

"Let the hypotheses of Lenlna i be satisfied° Then all the solutions of (14) are

ultimately bounded. (This means that there exist positive constants A3 and B3 such

that Ix(t) I < A3 , ly(t) l <. B3 for any solution of (14) as long as (x(t o )_(£Q_)

E 2 at t = to , and for some To, where t > T=.)"

Theorem 7 [5]

"Suppose that the same conditions as those in Lemma i and the conditions for the

uniqueness of solutions in Cauchy's Problem are valid. Moreover suppose that

f(t + w, x, y) = f(t, x, y)

and

for a positive constant w.

g(t +w, x, y) = g(t, x, y)

Then, (14) has at least one periodic solution of period w.

Example 5

...... _=_.ed u_Cons_d_ th,_ system _^_'- '--"

_O

where g(x) is continuous and g(x) sgn x r co as Ix ]---------_ oo.

It can be shown that if F(y) is continuous and F(y) sgn y _ 00 as

and p(t) is continuous and bounded, then all solutions satisfy ultimately

Ix(t)l < A , ly(t)l B, y = x,

where A and B oee independent of the particular solution chosen.

In applying the methods presented in [5] to this example, we let

x = y

y =-F(y) -g(x) + p(t).
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The resultant V-function for this system can then be chosen to be as follows, where a and b

are sufficiently large positive constants:

v(x, y) =

where _ = _(x, y) = -

exp [u_ , (-_o<x-oo; y_b)

exp [u - y + b] , (x _ a; i Y l _ b)

+ < '
exp [u + 2__bb(x + a) - , x _ a, ly I _ -b)

a

exp [u - 2b] , (x _ -a, y & -b)

exp [u + y -b] , (x & -a,lyl _ b)

y2/2 -/o x g(x) dx.

In reference [6] , Yoshizawa provides sufficient conditions for every solution of

x = f(t, x, y)

y = g(t, x, y)

to converge to a periodic solution as t _ oo, provided the solutions are ultimately

bounded.

In reference L7] , Yoshizawa discusses the stability of solutions of a system of

differential equations using his V-functions as Liapunov functions° The results of

this work coincide with results stated explicitly in other sections of this report.

In reference [8] , Yoshizawa discusses the solutions of the second order boundary-

value problems° Yoshizawa summarizes the work done on this problem with reference to

the existence and uniqueness of solutions.

Also, in ES_ , Yoshizawa considers

= F (t, _)o (15)

The next three theorems give conditions which guarantee the ultimate bounded-

ness of the solutions of (15).

Theorem 8 [8_

"(H) If (i) D* is the domain; O _ t, [] _ II

large,

Ro , where Ro is sufficiently
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t A4_" __ _2_ ¸ V _ _ )

(iii) for any positive number R _ Ro, there exists a positive constant G(R)

such that V(t, x) >i G(R) > 0 for Jx I = R,

(iv) V (t, x) _ o, uniformly, for 11x 11 _ oo,

(v) V(t, x) satisfies the local Lipshitz condition in x ,

(vi) in the interior of D*, V is absolutely uniformly continuous and we have

h--_ o h V(t + h, x + h F(t,x))- g(t, x)

>_ 0, almost everywhere,

(C) then given an arbitrary positive number o< , we can find a positive number /3 _o_ ,

such that for any solution of (15) satisfying IIX(to) II_ =_ at an arbitrary to _ O,

towe have for t

Theorem 9

"(H) If

/I

II x(t) II </_

(i) the conclusion of theorem 8 is true,

(ii) there exists a function V(t, _) defined in domain D* ,

(iii) V is positive and continuous in D* ,

(iv) for any K > Ro > O, we have

as t ------%- oo ,

(v) V is locally lipshitziBn,

(vi) in the interior of D*, V is absolutely, uniformly continuous and we have

IIx II<- K, then V(t, x) _ 0 uniformly

h --_0 h V(t + h, x+ hF) - V (t, x) >/ 0

almost everywhere,

(C) then for any solution of (15) for which x(t o)

some value _: , say T _ to , IIx(T)II _ Ro, where to

= xo and ]IXoII< _ , we have, at

is arbitrary.
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Theorem I0 [8]

(H) If (i) the assumptions of theorems 8 and 9 are valid

(C) then there exists a positive constant B (independent of to and _Xo) such that any

solution of (15) satisfies ultimately

U _(t) ll < Bo

In _8], Yoshizawa has examples of the above theorems and he also gives a further

extension of theorem I0.

In reference _9_ , Yoshizawa considers a theorem which gives the necessary and

sufficient conditions for the solutions of (15) to be bounded°

Theorem ii [9]

In order that every solution of (15) be bounded it is necessary and sufficient

that there exists a function V(t, _) satisfying the following conditions in _:

(i) V(t, _) > 0 ,

(2) V(t, _) _ oo uniformly in t, when i|_ II- _ oo,

(3) for any solution of (15), the function V(t, _) is a non-increasing function of i o

And for the condition of equi-boundedness, we further require_

(4) there exist _ > 0 such that

V(to, x) _(K) provided _ _ K .

the next twelve theorems, from [9], summarize the boundedness results for

equation (15)o

Theorem 12

(H) If

(c)

19]

(i) F is periodic in T,

(ii) solutions issuing from t = 0 are equi-bounded,

(iii) solutions issuing from t "2 0 are simply bounded,

then, all solutions are uniformly bounded
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Notation

(1)

(2)

(3)

-A.u

V(t, x) defined in_ means that V is continuous over o _- t

D F V n = Lim i(

ih--_o h V(t + h, x + h F) -V (t, x)

V(t, x) has "property A" when there exists a _-_(K) such that

V(t, _) _ _(K) when I_ _1 _ K.

(4) D F V has "property B" when there is a _ such that

II x II _ K.

Theorem 13 _ 9_

(H) If (i) V(t, x_) is defined in A,

(ii) V _ oo as II _ [I ' _'_ _,

(iii) V ha8 property A,

(iv) in the interior of _ , we have D F V _ O,

(C) then the solutions of (15) are equi-boundedo"

Theorem 14 _ 9_

"(H) If (i) V(t, _) defined in _ ,

(ii) V -----_P_W) unlformiy as 11_)I_oo,

(iii) V has property A,

(iv) in the interior of L_*,

we have D F V -_ O,

(C) then the solutions of (15) are uniformly bounded."

Theorem 15

"(H) if (i)

(ii)

(iii)

(iv)

V is defined in _,

V _ Oo uniformly as _ x_

V has property A,

D F V has property B,

< _,lixll >_ Ro.

D F V_ - _ (K) _ O, provided
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(C) then the solutions of (15) are uniformly ultimately bounded_"

Corollary

"(H) If (i) solutions of (15) are uniformly bounded,

(ii) V is defined in _* and has property B,

(iii) D V has property B,
F

(C) then the solutions are uniformly ultimately bounded."

Theorem 16

"(H) if (i)

(il)

(iii)

V _(_ uniformly as IIx_l " _ _,

DF V has property B,

there exists some R _ Ro and _such that V __. _ for

(C) then, the solutions of (15) are equi-ultimately bounded."

II II = R,

Theorem 17,

"(H) If (1)

(ii)

(ill)

(iv)

(v)

(c)

[91
solutions of (15) are uniformly bounded,

V is defined in _ and has property A,

w w
there exist V (t, x) > O in _ ,

-V* has property B,

Lira _D F V + V*] = O uniformly in any domain R o _ I_x [_
t ---P_ &.

then, the solutions of (15) are uniformly ultimately bounded."

K,

Theorem 18

"(H) If (i) V defined in A ,

(ii) V _ _ uniformly as l_x _J ._-_,

(ill) there exists R and_such that V _. _when Ilxll
w .

(iv) V > 0 and defined in _ ,

(v) - V has property B and Lim

t ----_ _

any domain R _ llx_l _ K,

DF V + V =

R ,

O uniformly in
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(vl) solutions of (15) are bounded,

then they are ultimately bounded."

Not__e

We can replace bounded in (vi) by equi-bounded, then the solutions are equi-

ultimately bounded.

Theorem 19

"(H) xf,

(c)

[9]
(1) the system in (15) is of first order,

(ii) solutions are ultimately bounded,

then the solutions of (15) are equi-ultimately bounded."

Theorem 20 19q

"(H) If (i) (15) is linear,

(ii) solutions are ultimately bounded,

(C) then the solutions are equi-ultimately bounded and equi-asymptotically stabler"

Theorem 21

"(H)

(C)

If (i) F is periodic,

(ii) solutions are ultimately bounded,

then the solutions are equi-ultimately bounded and equi-asymptotically stable. "

Theorem 21

"(H) If (i)

(ii)

(iii)

(iv)

9

is periodic,

unique solutions of (15) exist for the initial value problems,

there exists a _ > 0 such that if I[/_olI _--_B, _[_(t; _o, O) I[_ _.

solutions are ultimately bounded, for the bound B,

(C) then the solutions of (15) are uniformly ultimately bounded. "
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Theorem 22

"(H)

(c)

If (i)

(ii)

(ill)

(iv)

_9]

is bounded when

there exists V _ O in A_,

V _oo uniformly as I[_]I

D V _ O,
F

i[x il is bounded,

_ 00,

(v) R is sufficiently large, then D _V has property B for l_x_l _--.

then the solutions of (1.5) are ultimately boundedo"

R,

Theorem 23, [9]

"(H) If (i) F is periodic in

(ii) solutions issuing from t = 0 are equi-bounded and the solutions are

ultimately bounded,

(ill) Ro is sufficiently large in _,

(C) then there exists a positive V(t, _) defined in _*whlch is continuous and its

first partials are continuous. V _ _ uniformly as i_xI% ._-_ and V has

property A. Also,

Q
_vV = v(XX)T E (t, x)

has property B."

In reference IiO_ , Yoshizawa discusses the boundedness of solutions under

perturbations. He considers the unperturbed system to be given by (15) and the

perturbed system to be

P

x --__F, (t,_x) + H (t, x).

the concept of total boundedness arises in the following theorems; and it is

related to other types of boundedness by these theorems.

(16)
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(c)
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= A(t) _ are totally bounded,

then the solutions are uniformly ultimately bounded. In fact, ll_(t) ll-----_O

as t --------_oo.

Theorem 25

"(H) If (i) R > O, constant, and sufficiently large,

(ii) t_* is defined by,

/X*: 0 _ t < OO; llx_l _/ R,

e
(iii) V is a positive continuous function in_,

(iv) V has property A and V _ oO uniformly as

(v) V is locally lipshitzi_n in x,

(vi) D F _ has property B,

(C) then the solutions of (15) are totally bounded."

IIx II OO,

Theorem 26 [ iO]

"(N_ Tf &f

(ii)

(iii)

4, (I q'_ h,_l_ng= t-n C' with r_.qpeet to x.

is periodic in t,

solutions issuing from t = O are equibounded and if the solutions

are ultimately bounded,

(C) then they are totally bounded."

Definition

For a given positive function f( _I _ II ), the solutions of (15) are said to be

ultimately bounded under constantly actin_ perturbations of order f( V _l! ) if there

exist two positive constants o( and/_ such that
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I] _H(t, __)11_. _ f (11 __II ) for

lim II-_ (t; _o , to) ll
t -----_ _

where x is any solution of (16).

xll > B; and then we have

B,

Theorem 27

"(H) Zf (i)

(ii)

(iii)

1103
V is positive and continuous in _,

V has property A and V _ _ uniformly as [[ _x II_ OO,

v (t,x) - v (t,Xl) _< K 4--11x -Xl_

where _ and _i are sufficiently close such that K is only a function of [] _ ]] ,

(iv) DF V _ - G( I__I_ ), where G is a positive continuous function for

II_ II _ R 3 ,

(v) K2f ([] _ ]] ) = O (G2 (I[ _I[ ))as []xl] > OO,

(C) then the solutions of (15) are ultimately bounded under constantly acting

perturbations of order f (Jl _]I )'"

In references _II, 12, 13_ Yoshizawa discusses the boundedness properties

of _ = F(t, _) in more detail.

In reference [14_, Yoshizawa considers the following second order system:

•- _)x = F (t, x,

The following theorem gives sufficient conditions for bounded solutions of (17).

(17)

Theorem 28 I 14_

"(H) If (i) two functions w

belong to C 2,

(ii) w and w are bounded along with their derivatives,

(iii) w _ w, for all t

eO

w <_ F (t, w, w), for all t

II

w >_ F (t, w, w), for all t

u

(t) and w (t) are defined on o _ t W. _ and
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(iv) D is the domainwhere o _ t < _ and Kit) _ x_ w it),

(v) domain DI is defined by (t, x) _ D and y _ k, if domain D2 is defined

by it, x) _ D and y_ - k, where k is a sufficiently large positive

number and y = x,

(vi) there exists two positive continuous functions Vl(t , x, y) in D I and

VI (t, x, y) in DI,

(vii)

iviii)

iix)

VI , V_ ___ a( _ y_ ), where "a" is a positive continuous function,

V I, V 2 _ oo uniformly as I y I "; oO,

VI, V 2 satisfy the following in the interior of D I and D2:

VI = lim
+

h _o
1 #_Vl(t + H, x + by, y + h F)-Vlit, x, y)_

L J

>10,

- iV 2 = lim + 1 V
h ---_ o

(t + h, x + hy, y + h F)-V 2 (t, x, y)_ _0

(C) then the equation (17) has a bounded solution". Yoshizawa uses theorem 28 to prove

the existence of periodic solutions for a wide class of equations.

Differential Inequalities

One way to look at the direct method of Liapunov is the following:

"it depends basically on the fact that a function satisfying the inequality

_(1) _ w (r, re(t)), m (_o) = ro,

is majorized by the maximal solution of the equation

= w r) , r(to) = ro."

this comparison principle enables one to study various problems of differential

equations. Because of this fact we make an excursion into the area of differential

inequalities.

The topics which can be studied through the use of differential inequalities are

upper and lower bounds for solutions of differential equations, the unboundedness of
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solutions, asymptotic behavior of solutions, existence of oscillatory solutions, and many

other topics.

The following inequality, known as Gronwall's inequality, is one of the simpler

and more useful ones.

Theorem i

'_et 0 _ g(_) on _a, b_and let c and m be positive constants, then if

g(t) _ c + m f g(s) ds on La, b_,

then a

g(t) _- c exp _m_ "

this result can be easily generalized to the following case:

u(t) and v(t) are non-negative continuous functions on _a, b], c > o,"if and

t

v(t) _ c +fa v(s) u(s) ds, la, q,

ftthen v(t) _ c exp_ u(s) d
; and if c = O, then v(t) - O for _a, b]."

In reference 23 , Conlan's generalization of the above theorem is for the case

where v(x) is a vector-valued function, v_) _ v (x I, ..., Xn).

As an example of the application of Gronwall's inequality, we consider a

theorem from Bellman's book, I15_.

Theorem 2 115]

oe

"All the solutions of u + (i + x(t)) u

I x(t) l dt < oo,

X -- "_ 0 as

= 0 are bounded provided that

t _ Oo."

(1)

(2)
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Multlpl_ "_ + (I + x(t)) u = 0 by u and integrate by parts to obtain

2 ½/ot2 + u___ °
2 (i + x(t)) - x (tl) u 2 dt I = C2o

We can now take to sufficiently large so that

i + x(t) >j 1/2 for t >i to ;

thus, we have

.t

u2 <_ 4 Ic21 + 2jo i x (tl) I u2 dtl

_t

c3 + 2jo i x (tl) I u2 dt I.

By Gronwall's inequality, we have

OK

o3expI2I
L =/t o

Another example of this technique is also a theorem which comes from i15].

Theorem 3 [15]

"If °"u + a(t) u = 0 and

fOO )a(t)l dt <. OO, then Lim

t ---_oo

exists."

Proof

Qt

Integrating u + a(t) u = 0 twice between the limits I and t gives

t

u = cI + c2 t "_i (i - tl) a (t I ) u (t i) dt l"
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For t > i, we have

lul

t - loll + Ic21

t

tl la(tl) l _m(_l
t I

dr;

By Gronwall's inequality we obtain

Iu_2_ (Icll + 1=21)
t

eXP_o t tl _ a(tl) I dtl _" c3•

Since

t

U(tl) dtll '

then from lu I _tC 3 we have

t

lul _ Ic2_ + CBfl

tl la(tl) I dtl.

Thus since_ t

"i

tl ] a(tl) [ dt converges, llm "u exists.

t --_oo

Another linear, time-varying, second order system for which the application of

Gronwall's inequality is very important is given in theorem 4.0de state the theorem

but do not give the proof.)

Theorem 4 115]

s_

"If all the solutions of u +

•- [. ]solutions of u + a(t) + b(t) u

b

a(t) u = 0 satisfyf u 2 dt < oo, then all the

a

= 0 also satisfy u dt _ oo provided

a

Ib(t)} < c, t > 0."

Gronwall's inequality and its generalization, can be applied to nth order systems
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as well as second order systems. In some cases, it may be more convenient to use a

different norm than the Euclideon norm. Even though this may be the case in what

follows, we will no..!tdiscuss the differences between norms; but will assume that all

the norms are equivalent for the operations performed.

Theorem 5 [15_

"If all solutions of _ = A y, where A is a constant matrix, are bounded as

t -----_, then the same is true of the solutions of

provided that

oo

Proof

Rewrite the equation _ = A z + B(t) z

as
t

z = _ +/ X

o

(t - t 1)_B(tl) z(t I) at I

where _f is the solution of y = A y

solution of Y = A Y, Y(O) = I.

satisfying _(0) = z(O), and Y is the matrix

Now, let C max ( sup [IY [[ , sup [[Y__[I ) then
t _ o t>_ o

t

ll__ll _,ll:_ll ÷/ II Y (t - tl)ll, iI B_.(tllg.Jl+_ (tl)[]
o

dt I

t

Cl II (tl)I)' II (tl)ll dtl.
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Thus, sinCe_o II_BII

QO

--< cI exp IClfo Jl _B II dtl_

dt is bounded, U _--_ is bounded.

Theorem 6 _15]

"If all the solutions of _ = A. y approach zero as t

solutions of __ = _ + B(t)) __ approach zero as t

OO, then all

--__ provided that

Jl_B(t)lJ-< Clfor t to, where c I is a constant depending on Ao"

The proof of this theorem also is dependent upon Gronwall's inequality.

In reference 115] , Bellman gives several other theorems dealing with the system

The proofs of these theorems depends upon the application of Gronwall's inequality.

OTHER EXAMPLES OF THE APPLICATION OF DIFFERENTIAL INEQUALITIES

The following discussion will be a brief outline of the contributions of many

authors to the fields of differential inequalities and differential equations.

In reference [32], Viswanatham generalizes Gronwall's inequality. We present

this work in theorem-form.

Theorem 7 132]

"If _ (x) _ r_ +_x

x o

f (s,_,(s)) ds
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where f (x, y) is continuous and monotonic increasing in y in the region

R defined by Ix - Xol _/_ a, _ y - n _ <_.b, where a and b are positive real numbers,

and _(x) is continuous in Ix - xo I _- a, then _(x)_ _ (x), where _ (x) is the

maximal solution of _ = f(x,_ ) through the point (xo, n) for x >/ xo.''

Theorem 8 _32]

"Assume that the conditions on f(x, _) in theorem 7 are valid and assume that

x
I"

t, x o

then _(x) >/ _(x), where p(x) is the minimal solution of the differential equation

= f (x,_) through (Xo, n) for Xo _ x ._< x o + a."

Corollary i

'_nder the conditions on f(x, y) in theorem 7,

X

if _ (x) _ _(x) +__ f(s,_(s)) ds

--%2

then

O

_(x) _ _ (x) +_(x) for x _ xo; where M(x) is the maximal solution of

f (x, _ + _ (x)) through (x o , 0) and as far as the maximal solution exists°"

Corollary 2 gives a similar result corresponding to theorem 8.

Gronwall's inequality follows from theorem 7 if f(x, y) = If(x) J y, xo = o.

if f(x, y) =hi(x) g(y), where /D-(x) is non-negative and g(y))is monotonic increasing

in y, then we get the inequality mentioned earlier in the text.

The theorems 7 and 8 are useful in providing estimates on the closeness of approxi-

mate solutions to the actual solution, and providing bounds or the norms of solutions

of differential equations. Applications of these theorems are provided by Bihari tl_ ,

Langenhop [28] , and Coddington and Levinson [22].
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reference 12_ , Choy-Tak Taamderives some criteria for the boundedness ofIn

the solutions of certain nonlinear differential equations using Gronwall's inequality.

The system he considers is given by

(r(x)y')
o4x +

n 2i-I

Pi(X) y = Oo

i=l

In reference [2_ , Choy-Tak Taam derives sufficient conditions for the solutions

of the equation

____r(x) V') + q(x) y = f(x, y)

to be bounded, where f(x, y) is a "small" nonlinear term. He assumes Lebesgue

functions and that f(x, 7) is lipshitzi_n in y.

In reference _25_, Kolodner derives expressions for the upper and lower bounds

for the upper and lower bounds for the solutions of the Ricatti equation:

• 2 2
x + x = f(t).

Kolodner makes use of differential inequalities in his proofs.

In reference _31] , Lj_E_ states and proves five theorems concerning the boundedness

of nonlinear, second order differential equations of the type °x + f(x, _) + g(x) = Oo

His theorems are generalizations of the following statement:

"if d _ 0 and e _ 0 are real constants, then a solution x(t) _ 0 of the linear

equation°x + dx + ex = 0 is oscillatory or monotonically approaches zero."

In reference 124] , Hochstadt extends the following theorem of Liapunov.

Theorem 9 [ 24]

'_et p(t) _ 0 be nonnegative, piecewise continuous, periodic function of period T.

Then all solutions of

OI

y + p(t)y = O
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T

T i P(O dt_ 4."

Jo

Theorem I0 [24_

'_et p(t) _ 0 be nonnegative, integrable, periodic function of period T and

be the smallest eigenvalue of the boundary - value problem

T

If T/o

_' + 7kp(t) y = O

y (O) + y(T) = 0

y (o) + _(T) = O.

p(t) dt -_ 4, then _ i."

In reference 133], Waltman establishes a criterion for the oscillation of all

solutions of

"y + a(t) f(y) = O.

He gives three theorems dealing with this problem, where the following conditions are

placed on f(y):

(I) f(O) = O; f(y) _ O, y _ O

(2) df continuous and nonnegative.

dy

In reference E30], Trench considers the behavior of the solutions of the differential

equation

eP

x + [ f(t) + g(t)] u = 0

as t _ _. He assumed that the solutions of _ = f(t) _ are known.

In reference [26], Lakshiborth, applies Gronwall's inequality to derive criteria

for the boundedness and unboundedness of solutions of
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= f(x, y>.
dx

In some of his proofs, he uses Liapunov-like functions.

Finally, in reference [27], Lakshmikantham provides bounds on the norms of the

solutions of

x = f (t,x_J,X(to) = _o, to >I 0.

He uses a "test function" in his theorems and proofs which is strongly related to a

Liapunov function. Also, he studies the system

x = A(t) x + F_ (t, x_) f(t, x_)

with regards to stability and asymptotic stability.
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STABILITY OF NOI_/ITON_IOUS SYSTEMS

In this section we consider some of the problems which occur in the stability

analysis of nonautonomous systems. Most of the work which is discussed here deals

with linear systems, although there is some discussion concerning nonlinear systems.

This section is divided into four parts; theorems on continuability and boundedness,

theorems on the stability of linear, nonautonomous systems, theorems on the stability

of nonlinear, nonautonomous systems, and methods of constructing Liapunov functions.

In this section there is no compendium of examples, as such; the examples are given

throughout the text to aid in the discussion of the material. However, it should

be note__.__dthat there area few other nonautonomous systems scattered throughout the

rest of the report. Also, because of the '_ethod of Construction" of this report,

there are examples of time - varying systems in the miscellaneous section.

(Z) THEOREMS ON COWn_ZLZTY AND _ED_SS

Let us consider the system of differential equations:

where

x (0) =xo, 0 _ t < _ , (2)

and f is continuous for all o _ % < _ and /ix// < OO°

We shall use two norms, denoted as follows:

and

ixl--ix,l ÷ I_i ÷. ÷ /Xn/,

2 2 2 l/2.
llxll: (Xl÷ x2 +. .÷ x_>

Let V (X, t) be a scalar function defined for 0 _ _ < CO and for all X with

the following properties:

(1) V is continuous in X and% ;

(ii) V has one - sided derivatives with respect to X and _ ;

¥ . )



(ill)

(iv)

Let V, defined as

- 2 -

Limv _, t) = oo for all t; and

V is positive definite.

llxH< 00 i

v=_v

be bounded (whenever it is necessary) as follows:

(_, t)-_ CO (_, V(_, t)), (3)

v (_, t)_ _ (t, v (_, t)), (4)

where e and _3 ere continuous for

o _ t < OO, Ixl < OO, and _0(t, o) - _ (t, o) - o.

The following theorems, 1 and 2, are concerned with the continuity of the

solutions of the initial - value problem in (1) and (2) as t becomes large.

L_a 1 (By Contl) [I]

'Zet x(t) be a solution of (I). Define m(t) by the following:

m(t) -V (t, _ (t)) , ro = _(o) -V(o, _).

Let (3) be satisfied by V, and let r(t) be the maximum solution of the equation

= _(t, r), r(o) = ro. (5)

Then ._(t) can be continued to the rlght(as a function of t) as far as r(t) exists,

and for all C for which m(t) _ r(t)"o

Lemma 2 [i]

'%at x(t) be a solution of (i) and let re(t) = V(t x(t)) ro = re(O).

Let (4) be satisfied and let _(t) be the minimum solution of the equation

= _(t, r), r(O) = ro.

Then m(t)>/ _(t) as far to the right as both _(t) and x(t) exists. "

The above lemmas are used to verify the following theorems.

(6)

L
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Theorem I _I]

"Let x(t) be a solution of (I), defi[_ed for all 0 _- t _ t_.

Ix(t) ]--------_oo as t _ to or x<_) can be continued beyond to."
I '

Then either

•heoremZ Lll

'_et (3) be satisfied and suppose all solutions of _ = u2 (t, r) can be

contin_._.d _or all t. then all solutions o_ (1)can be _ontinued fo= all t."

We now list some corollaries c,f the 'abo_'_e theorems which deal wi_'. t_.e

problem of bou_dedness.

Corolla : _l EI3
i

"If all the solutions of r =_J(t, r> are bounded, then all the s_lu_!ons

of (1) are bounded."

Coro!larqy 2 EI_

"If all solutions of r = _(t, r) approac.h zero as t

__o!,_,'t!.on._ of (1) _pprn_eh zero as t --_ oo."

Corollar_ 3 LIJ

--_ o_, then all the

"If the _imtx I
V --_ oo

r= _(t,r) approach infinity, then all the solutions of (I) approach infinity."

= oo and (4) is satlsfled, and if all the solutions of

V(t, x), and the solutions, x.

The next two theorems give relationships between the "test fun_tions",
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Theorem 3 [_1]

'_et _O and _ be monotonic nondecreasing in r for all t and suppose that (3)

and (4) are satisfied. Let all solutions of _ -_(t, r) and r = _(t, r) tend to

finite limits as t _ oO. Denote V40, _o) as ro. Let r4t) be the maximum solution

of 45) and _(t) be the minimum solution of 46). Then if _ is a solution of (I),

V(t, _(t)) tends toward a finite value as t --_ _ for all,t; and Lime (t) •
t-_Qo

llm V 4t, _x(t)) _--lira r4t)."

t--_QO t --_Oo

Notice that if _4t_ r) __ O, then V is negative semldeflnlte and V approaches

a limit as t--b_; but V approaching a limit does no..__timply that K approaches a

limit. Brauer in reference _ gives a counter example to support this statement.

The example is as follows:

where

Xl ffi x2' x2 " " x t

2 b2
if V = _T x, then V = a +

xI = a cost + b sin t

x2 = - a sin t + b cos t ;

for all t. Therefore, V approaches a limit as

t-_oo, but k is periodic and does no____tapproacha limit. The following theorem

gives sufficient conditions to guarantee a finite limit for the solutions of (I)o

Theorem 4 [_

"Let 43) be satisfied and let _Obe monotonic nondecreasing in r for each

fixed t.

and

/t itV (t, _ 4s, _ (s_ds) _ V (s, _ (s_ ds.
a a

Then all solutions of 41) tend to finite limits as t _ ooo"

Suppose all solutions of r = _3(t, r) tend to finite limits as t _ oo

47)
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Next, we outline some of the results of Rosen, [2].

solutions of (I) and (2), under the following conditions imposed on f _, t), by

llnearizin8 f _, t) and then applyin E the mean value theorem. We assume that f

has continuous second partial derivatives. Thus, the mean value theorem yields.

_f_, t) - _f (_,t) + __ ((i _x,t) _x,

I and_B(_ __,t)isthe_aco_i_,_trix/_i(_i__,t)_ .
L _xj

Therefore, equation (1) becomes

He obtains a boun_____dfor the

Lemma 3 [2]

- _f(9.,t). (8)

0__(i __

__CE(I), t) + B t)-T CE(1)'

I and let _ _, t) be such that the matrix

is positive semldefinite for o ½ _- T. Suppose

Then th._ ,y_=+= - ,,-_,,. rn._-_n,,n,l.q_n1,11-'Inn_(t_ nf (I_ .quch that

Inx,I_ I!_II + IIf _, t) dt"
II- i! _ II I " --

o

The hypotheses of Lemma 3 can be weakened so that the existence of a solution

depends on the minimum eigenvalue of B + _T ° Hence B + _BT need no__/.tbe positive

Sem_definite. We denote this minimum eigenvalue, over the finite interval

o _ t _ T, by 2 _ (_), where _ = jl_ll

In general, the matrix B cannot be determined since the (i are unknown.

Rosen, [2], considers the evaluation ofA(_) a problem in non-linear progrannning;

and in an appendix of his paper, he shows how the problem can be formulated as a

minimization of the variable _ in a space of (2_ + _+ i) dimensions, where 7)

is the number of par@meters.

Hence,
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In theorem 5, an upper bound for Hxl/ is given for the interval o

The bounding function is defined in the following way"

t

-At _o(x,t)- flaile +
-_ (t -'_)

and

= Max (A t) >o°

We now consider the equation

L Ic< >l - o.
If the function _ [@(_ )} iS bounded and nondecreaslng, hence there

exists a maximm root Am -_X_(o), provided there is at least one _ such that

t --_ Tm

(9)

Theorem 5 [2]

"Assume that there exists a root _m for (9).

continuous solution x of (I) for which

Then t_ere exists a unique,

Example [2]

Consider the first order system

x
1

aThen f(x, t) = f(x) = l--l_x , where • =

elgenvalue of 1/2 f__B % __BTIIS _(_) = - 1

becomes

0 <x o < i.

- I I_ence, the mininmm

(i - x)2
• The function _(_ , t)

(i __)2



Xquation (9) becomes

-7 -
-_,% - AT

pc,_,o - _oe , pc_> - _o_ •

I _ = 0.

-
-_mt

If xo - 1.!_ and T - 1/2, then >_m-"" 1.709 and II3Jl _ _'(Am, t) - x o e
lO

0,26. From the exact solution and for xO = 1 and T = 112; we have Ilx}l -_ 0.18.
10

Thusj _ (_m_ t) gives an upper bound,

From theorem 5, we can conclude the following about the asymptotic behavior of

thesolutionso_ <I>ast-----_: "if llf_, t_llisbound_and_ > 0 for

0 _ t <_ T as I" _ o0, then Itxll is bounded as t _ oo."

Corollary . 4 C2]

'_._ II___,olI b_bou_d_fo_ >_o_d_-_A<e_a_ /1_1/_a._
defined for T = _. _f _m > 0 is the maximum root of the equation

_II -I 1A -_oll+A I1_-I1.,, -_= o,
then there exists a unique, continuous solution of (1) and

Example [2]

Consider the second order example given by:

- i -t

x 1 = - XlX 2 cos_t -- 2xl(l +! Xl) +
2 8

= - fl (Xl, x2,t) ;

3/2

x2 = - (2 -x 1 cos2vo_) x 2 - (1 + x2) +

= - f2 (Xl,X2,t)"
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The matrix B is defined as:

a b

c d

-2

,_ =_i_2cos_ + 2 <l + !_i _l)
2

b = _iXl cos _

c = --_2X2cos2 _

2 3 V// 1 + _2x2d= 2--_2xlcos_ +

_ = cOJC.

The value for A [C] for any fixed _ is given by

2A [_] = mf_,_z la +d- / (a-d) 2
(b +;c)2 _+

Thus, for _2 _ i ,

and f2 (0, O, t) = O.

"_"_o,e = II_oU+,__ H-_l/max
is 1/2. In conclusion, the bound for

- t/2

II II

t

A [ e 3 _ 2 <l-e)° Also,fl¢0,0,t)= - _t/S

= i -t _,,,dII-_II = _-,'"-,,.,,,_for_,II__<o,t>ll w ,,.,.
implies that the maximum root of 2 { I - 12 - i)->,

]Ixllfor t >_0 is

f t -T - 1/2 (t -'_)
i18 _ d qr

o

-t/2. -t12

2 (1 - _ ) _ _ 314.

In the special case when (i) is !Inear, Corollary 5 gives better results than

Theorem 5.
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_Let_x (t)satlsfyx =-__ (t) x + _f(t),x (0)=Xo. Let_(O be the

•Ini_.eiger-_alueof1/2[__+ _BZ]. Then

o o

t

- (,-) d d_.

Consider the eonst_t coefficient, second order system given by:

= y

• _2y=- x --2Ey.

For _ > O, this system is asymptotically stable.

But, the solution can be made arbitrarily large at a finite time. The solution of

the system is

-_%

x =%_

where

-eL
= / t2 + (1- _ 0 2ll- ll

For any M > O, let E = 1/Me ; therefore for t = Me , //x// : .. The
bound given by Corollary 5 is:

- _ (1 - _)2 t/2
e __
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zxmple [_

Consider the second order, linear, time-varying system given by:

where x(O) -l_y(o)-i +

_(t)

2_
:_ "-2x +e. y,

. e. "2t x - 2y ,

/_. The solution is given by'.

(_T -1) t

((_ -3)t
y(c) - (i + vq)e .

Thus, the actu.lwlue of IJ-_II is

2 - 4tii__ll= _ + (1 + _) e

Therefore the solution grows exponentially. The upper bound given by Corollary 5,

where the eigenvalues of B are i and 3, is

. "
With these examples, we conclude the boundedness part of this section and we

now look at the stability problem of nonautonomous systems.

(II) THEOREMSON THE STABILITY OF LINEAR,

NONAUTON(_4OUSS_STEMS

Consider the linear system

= A (t) x.

It is well known that if A were a constant matrix, the system would be

asymptotically stable if every elgenvalue of A had a negative real part.

In [5], Zubov shows that the above statement is not, in general, valid for

nonautonomous systems. Yet one might expect that the above criterion would

apply to system (i0) if the elements of A(t) varied "slowly enough".

(IO)
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That this is the case has been shown by Rosenbrock, [3] .

Theorem 5 [3_

_ Let every element aijof A_(_) in (10) be differentiable. Suppose that

laijl < a < oo and suppose that every eigenvalue _ of A_satisfies

ReCk) -- < o.

Then there exists soma _ > 0 which is independent of G such that if laLjl_

for all i, J, then the solution x -0 of (I0) is asymptotically stable. #

The problem still remains of finding the bound on thel_j 1. Rosenbrock

developed a method for the special case in which A_(t) takes the form

A_(t) =

0

-a 1

0
0

0

-a 2

1 0 0

0 i 0

*, • •

0 0

-a3 -a4

where the ai are time varying functions•

reduces to the n-th order equation:

x(n ..(n-l)) + an A + _.. _ aI

2 9 g

• • o

O
0

, (ll)

If A is of the form in (Ii), system (i0)

X = O.

_heorem 7 [39

\_Let A_(t) be given by (ii) and let the hypothesis of Theorem 6 be satisfied°

for all i. Then the point x = 0__is asymptotically stable if the matrix L(t)

is negative definite for all t _ to and for some _ > O, where

L = S A_T + AS --S +
_ _ _ _I,

and

(s ) = ----
K K .

(12)

(13)
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Example [33

Consider the system

• o@

y + y = x + 2 _ ,

y - -- z(t) x ,

or

+ (2 + =) _ + (z + _) x - o (14)

The eigenvalues of (14) are given by

_1,_2 _- (2 + z) + /4 + _2 _ 41
2

To insure that these are real and satisfy I _i - _2 I >/ _ _0, we requlre

that IK I _ I. Then the matrix L is given by

L = n 2

--K

2 + Z 2K- (2 + K) 2

2 3
2K -- (2 + K) (2 + K) - 3K(2 + K_

0
3 _o ok--2 -4(2 + K) 0 -2

+

(15)

The eigenvalues of the first matrix on the _ight of (15) are given by:

and

Z K3
/\2 _ (2 + K) (5 + K + K ) _ + + 4 K = O

mln h i >/ K 3 + 4 Z o $,_¢t_ [B = [37 )

L (2 + Z)(5 + K + Z 2)

Ib_jl| '_z x -_ _in >, (_B)x x " x T B x
-- -- i i --T .... '

__ max _i@) x T x ,
i

i i _ j

Hence, --_XT L x_may be estlmated by



- _2(K-. 4 =)
_L __ >"L(2+ E)cs + ¢ + K_
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and a sufficient condition for asymptotic stability i8:

x;

3 ÷4 - 2
(2+_)(s +E +_) L

Another criterion for the stability of a homogeneous system is given by

Wazewski, [_.

Oo

Theorem 8 [1]

of !
2

o;
If A(t) is real and continuous and if _ (t) is the largest eigenvalue

(_ + _T ), then the solution _ = _ of the system (10) is stable if

(t) dt _ oO and asymptotically stable if _ _(t) dt = -

Jo

In the proof we make use of a V-functlon of the form: V _, t) = _T x,
Q

V _ 2 _(t) x T x. From the inequality, V _ 2 (t) V we obtain an upper

bonn_for llxII,n_ely:

IJxJl L IIx_ll exp _ (s) ds
II-II -- II--Ul! I d_ *" " " I

L TM _1

From this inequality, the conclusion of Theorem 8 follows.

We now consider some of the stability results of Zubov, [4]. In the

following three theorems we use the notation

r : II--_II for a fixed vector __,

to--I1_11,

r (t, _o , to) = II x(t)ll , where x is a solution of (10) for the initial

//

values x(tJe) = _Xoo
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Theorem 9 [4_

\\
In order that every solution of (I0) satisfy the inequalities

"_ t

% -% t

r (t, x_o , to).<

for t >/ to, it is sufficient that there exist two quadratic forms V_, t) and

W(_, t) satlsfying the following:

(i)

(2)

(3)

_2(t> >io and_ 1
F

(4) W = dV.
dt

2 fV is nonnegative and l(t) r _---V _-- 2(t) r 2

W satisfies - l(t)r 2 _ W <---- 2(t) r

and _2 are integrable;

t/

Corollary 6

"If the function

is bounded from above for all t

is stable°"

>/ to > O, then the solution _ = 0 of (i0)

Corollary 7

"If the function

(t) t2 % (to) exp - 1
is



bounded and tends to zero as t-------_

is asymvtotically, s_able."
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_, then the solution x " R of (lO)

Theorem i0 [4]

"In order that every solution of (10) satisfy the inequalities

t

Pl ro (to) exp "- p _ r (t, xo, to)

ql ro _ (to) _'_ (t)
exp I " q2 _'t

for t >/ to , it is necessary and sufficient that there exist two quadratic

forms V(t, x) and _/(t, x) satisfying the conditions:

(i) V is nonnegative and satisfies

aI _(t) r 2 _ V_ a 2 _(t) r2; aI, a2 > O.

(2) W satisfies the conditions

2

- b I _(t) r 2 _. W _< -- b2 _(t) r ; bl, b2 > O;

(3) _ (t) > O;_(t) > 0 for t >/0; ___ is integrable;

(4) w =

Corollary 8

"If the conditions of Theorem i0 are satisfied and/(t) =_(t) = I, then

every solution of (I0) satisfies

Pl ro exp I-p2(t- x o, to) __

--_ql ro exp [-q2_ (t to) _ ,

r-

where Pl and ql are appropriate constants. "
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Corollary 9

"If all the coefficients of the system (I0) are bounded in absolute value

for t >/ O, then in order for the solution _ = 0 of (i_) to be asymptotically stable

and that every solution satisfy an estimate of the form

r(t, _o' to) _°<Iro exp I-_l(t - to)]

for t _ to it is necessary and sufficient that there exist two quadratic forms

V and W satisfying

2 2

air _ V _ a2 r ,

2 2

- blr _ W .._ -- b2r ."

Theorem ii [4]

"In order that every solution of (i0) satisfy the inequalities

ro /1½ (to) /2 "½

(t°)/iro "½

(t) exp - ½ _ d

to

t

( to)_L r t, x 0 ' _"

for t _ to, it is sufficient that there exist two quadratic forms V and W

satisfying the conditions;

(1) V is nonnegatlve and satisfies

l(t) r -v -_ (t) r ;

(2) W satisfies

- l(t) r -- W -- -- (t) r

are Integ_able in any finite interval;



(4)

and where

2 " + 2(t)
6_-1 - 1 for_l >10 ,

_"1 " 0 for _1 _ 0 ,

_2 = 1 for_l _ 0 ,

2 = 0 for/1 >/0""

- 17 -

Corollary I0

"If the function

_ (t to)- to/2 ½ _-_, (to) (t)

is bounded for all to >I 0 and t >I to, then the solution _ = O of (i0)

is stable. If in addition _ (t, to) --_ 0 as t _ c_, the solution x = 0

will be asymptotically stable."

So far we have considered only the homogeneous case; we now turn to the

perturbed linear system.

$

x = A(t) x + _ (t, x_)

If the function _ (t, x) is properly restricted, then the asymptotic

stability of (16) will follow from the asymptotic stability of (i0). We now

state some of the possible restrictions on E and the corresponding types of

stability imposed upon the system.

(16)

Theorem 12 [i]

'_et _(t)be the l_ngest eigenvalue of 1_2 _A(t) + AT(t) } .

;ot6_ [-!Lt /_(_) d = c < oJO--,._o

Let
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and suppose that for all C > 0 there exists a _(6) such that

II_(t,_II< _ I/-_IIfo_all__where//__//< 8. Thenthesolution

x = O of (16) is asymptotically stable."

Theorem 13, [I_

'_Let E (t, x) satisfy the condition

whenII__II

<

< H _< _ for all t >/ O. Let h(t) Satisfy ; h(t) J_ <

o

OO. Then if the system (I0) is uniformly " stable (i.e., all solutions _i_or_ly

stable), the solution x ffi O_ of (16) is uniformly stable."

Theorem 14

"Let

for all t

_T h(t)

o

[16]

(t, x_ satisfy the modified Lipschitz condition

II_ (t, xI) - _ <t,x2>lI <-h<t> llxl - x211

_" 0 and I] Xl I) < oo, //x2l I < oo. Let h(t) satisfy

dt < oo. Then, if the system (i0) is uniformly stable, the

system (16) is uniformly stable."

Let us now consider the system discussed by Kreidner, [6]:

_(t)= A(t)_ (t) + B(t) E(t) ,

_X(t)= c(t)_ (t) ,

where _(t) is an n-dimensional state vector, _(t) is an R-dimensional input

vector, and Y(t) is an m-dimensional output vector. Assume that matrix A(t)

satisfies a global Lipschltz condition:

//A (tl// _-- K < 00, for all t.

(17)

(18)
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We are interested in determining the stability of the system (17) from the

stability of the homogeneous equation

(t) ffiA(t) _(t).

We know that a unique solution of (19) exists for all t because of

condition (18); let this solution be given by:

_(t) - _(t,to) _ (to).

Then the solution of (17) is

_(t) = Z'(t, to) _(to)

If _ (to) = O, then

+ (t,_) _B(_) __(_) d_.
o

H (t,_) U('C) d_,

(t,_) __(_).where H(t,g) = C(t)

Before stating the main theorems of Kreldner we need some definitions.

They are as follows:

(19)

(20)

(21)

Definition I

'The equilibrium state x = 0_ of (19) is exponentially stable _f the

-C2(t-t o)

solutions (20)satisfy //x(t)I] _ CI. llx(to )II_ for every to and

for t >/ to, where CI and C2 are positive constants independent of to."

Definition 2

"An unexcited (i.e., x(to) = 0_) linear system is output stable if every

uniformly bounded input, [IU.(t)lI < C3 < oo, produces a uniformly bounded

outputIIx(t)ll _ % < _ foreveryto_ndan t >_ to."
The results of Kreidner are now given in theorem - form.
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Theorem 15 _6]

C5

t >/ to.

of (21). "

h _

< ooand //COt)//__c6 < o_foreveryto,ndall

Then exponential stability of (19) implies output stability

Theorem, 16 _6_

'_et B(t) be such that each mow has at least one element bij(t) satisfying

Iblj(t) } >/ C7 > 0 for some to and all t >/ to. Suppose that every column

of C(t) has at least one element Cq(t) satisfying /Cij(t)/ >/ C8 > 0 for

some to and all t >/ to. Suppose further that the system (17) is completely

controllable and @ompletely observable, that is, respectively,

_BT(_)_ _(to,_) __ _ O forsometo,all_ + to,andevery_ _ Oj

and C(t)m_-(t, to) _ _ 0 for some to, all t >/ to and every ___ _ O_ in

state space. Then, output stability implies exponential stability."

By strengthening the hypotheses slightly, theorems 15 and 16 can be combined

into a more compact form; that is:

Theorem 17 [_

'_xponential stability and output stability of a linear system (17) are

equivalent if the following holdl

(i) the system is completely controllable and completely observable;

in the state space;

finite k _ 0 in the state space."
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(III) THEOREMS 0 N THE,STABILIT_ OF NONLINEAR, NONAUTO _NOMO___USSYSTEMS

We begin our discussion of the nonlinear case by considering the system

of "first approximation." Consider the system

i " _P(t)x + S C_, t)

where the components of _ _, t) one analytic functions of x for all

t _ 0 and all x such that //x// __ A, A > O. Assume that the power

series expansion of _ in x begins with terms of the second degree or higher.

In this case we call the system

_e(t)_x,

the system of first approximation. We now state a few definitions.

The first definition which we consider is what Liapunov has called the

characteristic number of f(t). (The following discussion is taken from

reference [17]). The function f(t) is bounded for t > 0 if ]f(t)l < A for

sufficiently ]arge A; and unbounded if if(t)! > A for some t: no matter

how large A may be. A function f(t) is called vanishin_ if Lim f(t) = O.

t_oo at

It can be shown if there exists two numbers a and b such that f(t)_ is

unbounded and f(t)bt is vanishing, then there is a real ._ such that; for

any q > O, f(t) _( % +6)t is unbounded and f(t) e (A" q)t is vanishing.

(22)

423)

Definition 3 [i_

'_iapunov has called the above number _ , the characteristic number of f(t).

One can also show that

t --_ oo t

//

Some important properties of characteristic numbers are now listed.

(i) The characteristic number of a sum of two functions is the smaller of

the two characteristic numbers if the latter are different; it may

be smaller than either when they are equal.
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(2) The characteristic number of a product of two functions is not less than

the sum of their characteristic numbers.

(3) The sum of the characteristic numbers of f and i/f is not greater than

zero_ it is zero if and only if (_i_If(t)_)_t approaches a finite

limit as t _ _o

(4) The characteristic number of a product of f and some function g is equal

to the sum of their characteristic numbers _f the necessary and

sufficient condition in (3) is satisfied.

(5) The characteristic number of an integral is not less than that of the

integrand.

(6) Every nonzero solution of (22), where the Pij(t) _na finite for t _/ 0

and are continuous, has a finite characteristic number°

Definition 4 [_

'_ system of n independent solutions of a system of differential equations

is normal if the sum of the characteristic numbers of all remaining independent

solutions attains its supre_am."

Definition 5 [7]

'_ system of differential equations is regular _f the sum of the characteristic

numbers of the normal system of its independent solutions is equal to the negative

of the characteristic number of the function

exp _ - f _-s Pss (t)dt I where P (t)in (22)

is expressed as [Plj(t)_ "

Consider the case where the system of first approximation is reKular. The

following theorems deal with the stability of the undisturbed motion of (22).
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Theorem 18 (Liapunov)

"If the system (23) is regular and all of its characteristic numbers are

positive, then the undisturbed motlonof (22) II,-asymDtotlcally stable.

Theorem [TJ

"If the system (23) is resular and if among its characteristic numbers

there exists at least one negative value, then the undisturbed motion of (22)

is unstable."

Now consider the case where the system of the fi_tapproximation is no/%

regular. Denote by d the determinant constructed from the functions xij(t),

where Xir , . _ . , Xnr, r - 1, . . . , n are the components of the normal

set of solutions of (23). Denote by _ ljthe cofactor of xij in 4. Denote by S

the sum of the characteristic numbers of the normal set of solutions and let /_

be the characteristic number of the function 1/4 . Call 6"= - S -_.

Theorem 20 (Liapunov)

"If the system (23) is not regular and if each of its characteristic

numbers is greater than_, then the undisturbed motion of (22) is asymptotically

stable°"

Theorem 21 [7]

"If the system is not regular and the smallest characteristic number is less

than --o-, then the undisturbed motion of the system (22) is unstable."

We now turn to a more general nonlinear, nonautonomous system given by

x = .

We require that the components, is, of _ be real functions in some

region (h):

(2/,)

t >/ O, IIx]l L Ro" We also require that is(t, _.0)= 0 for all s; fs be
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continuous in t, and that fs satisfy the Cauc_ condition relative to xI , o . . , Xn.

(The Cauchy condition guarantees the existence of a solution of (24).)

Definition 6 _gJ

'_uppose that in some region (g): t >_ O, /Ix II "_ r (r _ lto), there is

defined a continuous function V(t, A) which is of definite sign and positive for

any fixed t _ O. Suppose there exists some real constant a

such that for every initial value Co >/ 0 and for every given

exists a value of t - T(_, to) such that in the plane t - T

one can always connect Che point _(T, _ with the surface //All

of a continuous curve _at all of whose points V(T, x_)< G .

that the function V is positive weakly definite."

> o (a < r)

& > 0 there

of the region(g)

m a by Means

Then, we shall say

Definite 7 [8]

'_et V(t, x_) be positive definite in (g) and let _ > 0 be an arbitrary

given number. Denote by D(_) the set of all those points of (g) at which

V(t, x_ _. Let t = t' _ O. The intersection of the set D(_) with the

plane t = t' in (g) we shall call _ (_ , t'). If for every sufficiently

small _>0, the maxinram norm of the points (t', x) e _- (_ , t') satisfies the

condition

then we say the function V(t, x) is positive strongly definite."

It can be shown, [8]_ that if V (t, _) is the positive definite quadratic

form

and _t' is the smallest eigenvalue of A(t), then V is positive strongly definite

if and only if lim _ l(t) = _ and V is positively weakly definite if and
t -----_ oO
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onlyif llm _ i(=) - O.
t ----_ Oe

We now return to the problem of the stability of equation (24). The next

seven theorenm will su_rize some of the results of Persidskii and Zubov.

Theorem 22 _8_,

"Zn order that the solution x - 0 of (24) be unstable, it is necossary and

sufficient that in some region (g)| t >/ O, Ilxll _L r __ R o , there exists

a positive weakly definite function V(t, x_) such that V >/ 0 on the basis of

equation (24) ."

Ex pl 

Consider the third order system glven by

= - 2xy_ ,

2_

f__L_ + x_

_ _ + x2y
t+l

Let V be defined by the following:

r'_- + 1-)

V(t, x, y,_)= x +y + _ +2 t +

This V - function is positive weakly definite and the corresponding V is:

= t ¥ 2 _2+ + +2 _y + (t + l)(e2+ y2)

_/ >/ O.

Hence, the zero solution of the above system is not stable.

Theorem 23 _8_

"In order that the solution x = O of the system (24) be asymptotically

unlform!y _ stable with respect to the coordinates of _o , it is necessary and

sufficient that in some region (g): t >/ O, II E II _ r _ R0 , there exists a
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positive strongly definite function V(t, x_ such that V(t, x_ _< 0 in view of

the system (24)."

For the next theorem, Zubov [5_requlres that _ (t, x__ be defined for all

t _ 0 and all _ in E n. Also, it is assumed that _ = _ is a solution of (24).

Zheorem2_ [SJ

"In order that the solution x = 0 of (24) be stable it is necessary and

sufficient that there exists a function V(t, x_ defined for llxll < r, t >i 0

with the following propertles:

(1) V is positive definite;

X _-_
m

(2)v _, t)_ 0 as //xl/----_0 unlfo_lywithrespecttot;

(3) the function V (t, x (t, to , x O )) does not increase when t >/ to

whero II-_<t, to , _)ll_ r..

iffurt_re,V------0ast --. + _ whenll_oJl< ;,thenthesolution

0 is aSYm_totical!y stable."

Now, Zubov requires that system (24) have a solution x = x(t, to , _o) for

any finite _, to) belonging to the region to >/ O, IIx=ll < H. Assume, also

that f (t, 0_ - 0 for all t > O. Consider two continuous positive

functions / (t) and _(t) defined for all t >/ O.

Assume that

and

t

(t,t , ki)= _(to) (t) exp - to

['t _ /-1 dt --. _
L to

1

_u_ t _-_.

Also, assume that_is bounded for all t >/ to >/0, where k and k i are positive

constants.
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_eoras 25 CsJ

'_n order that the trivial solution of (24) be aswmptotlcall 7 .stable and that

any solutlon beginning in a sufficiently small vicinity of the semi-axis x = O,

t >/ 0 satisfy the inequality:

it is necessary and sufficient that there exist two functionals V and W of the form

w =, _(t><,//__.l12>k _-zB<t>__,

and having the following properties

(1) V and W are defined and continuous when

(2)

(3)

2

bl //xl I 2 .< XT__(t ) x _ b 2

>/ 0 for sufficiently small _I;

llxll 2
II--_f

/1 _11'

where al, a2, bl, b 2 are positive constants;

W is continuous and V = W."

Theorem 26 [5]

" Let

_.(t, to, c) =

o (t)

where k, L and c one positive constants, and L >/k.

L k
d

Assume that _2 _ 0 as

t _ oO and is bounded when t >/ to >/ 0 and C >/ O.
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Assume that the qu_tity

(t) dt --++ _ _ t--_+ _.

In order that the trivial solution of (24) be asymptotically stable'and in order

that the inequality

where C

_-k

satisfied for any solution beginning in a sufficiently small vicinity of the

semlaxis _ = O , t >/ O, it is necessary and sufficient that there exist

two functions V _, t) and W _, t) having the following properties:

(I) V and W are defined and continuous for t >/ O, //_/I2 ___

<2> v --(//__II2>k _ (t> __TA_(t>x ,

w = - ( //__//2)b _ (t) __TB (t> x ;

<HI

where A- and B are such that there exist,positive constants al, a 2 ' b I ' b2 such

a 1 //x H 2 L x T A(t) x _ a 2 //x// 2

bI //x//2 _ x T B(t) x _ b2 //x// 2--

(3) w = Vo"

Theorem 27

'_et

_3(t, to, c, L) C
to

-i

dt



•where L>I and C _ Oo

Cl>_3 --+ o

(2) _3 is bounded when t

t
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Assume that _3has the following properties:

as t --_ + O0 ;

>/ to >/ 0 and C >/ O;

t -------_ + oO .dt _ + oO as

Ym order for the trivial solution of (24) to be asymvtotically stable and in order

=_t _ny soZutionbeslnnl.8i. the vicl.ltyo_ //_oI/ _- _, to >/ o, where

£ > 0 is sufflciently smll to satisfy the inequality

M1 Vt _o ) _3 (t' to, M2 C(_), b ) _ V l _(t, to, _o)) =a

-""1 vl _o> _3( t, to, .zc(L), _) ,

]_-1where C(b) = rdL.(to) VI X_o ) and where V I is positive defini_e, it is

necessary and sufficient that there exist two functions V(t, x_ and W (t, x_

saris fying the conditio.-_:

(1) V and W are defined and continuous in a sufficiently small vicinity

of the semlaxis t _ O, x = 0__;

(2> a ! _ (t)V I _ _---V _, t) ____ag _ (t)

_2

where W I satisfies

b I V I

where a I , a2 , b I , b 2 are positive;

vl (x>_ndW = - _wl

Wl _ b2 Vl

(3) W = V. "

Theore=28 [5]

"If there exist two functions V (t, x_) and W(t, x_ with the following properties:

(1) V and W are defined and continuous in the region t >i O, //x//2 < _,

where _ > 0 is sufficiently small;



-30-

-i

(2) aI V 1 _ __ V (t, x) [_(t)] _ a 2 VI_ ,

bl L2
_ (t) __ - w (t, _ _ b2 vI _ _(t)b I Vl

where I •LI - 2;

(3) w - 4,

then the trivial solution, of (24) is asYmptotically stable and any solution beginning

in a sufficiently small vicinity of the semiaxis _ = 0 , t _ O, satisfies the

inequalities

Vl_o) MI _3 (t, to, M2C(tl), L1) _-Vl(X(t, to, _o)) _-

NIVI (Xo) _3( t, to, N2 C(L2), b2),

L- i

We now consider one theorem dealing with the problem of stability in a finite

interval of time. This work is due to Kamenkov and Lebedev and is reported in

reference [4] , by Zubov.

Definition 8 [4]

"The homogeneous solution of system (24) is called stable for a given to

in relation to a positive definite function V (_, t) in the interval q_ if from

Vl X_o , to) ffia it follows that VI(t, _o, to) _ a for_to _ t_ to + q?)for

every sufficiently small positive a, where Vl(t , _o' to) denotes the value

V (_, t) on an integral curve passing through_x o at t = to."

Definition 9 [4]

"The homogeneous solution of the system (24) is stable in a finite interval

for a given to, if there exists a positive constant _ and a positive definite

function V(_, t) such that in relation to V the homogeneous solution of (24)
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is stable in the finite interval "_".

Consider the system

where _ is real and continuous for t _ 0 and the components fs of _ satisfy

°i
i-1

> 112, and _s are continuous and positive.where C

Theorem 29 [4_

"_n order that the homogeneous solution of (25) be stable in a finite

interval for a Kiven to with respect to some fixed quadratic form V (V is

positive definite), it is necessary and sufficient that fs satisfy (26) and

the eigenvalues of P(to) have nesative real parts."

(25)

(26)

IV METH.ODS _n. rn_.,m_Twn • TA=,,_,_, _w_CTIONS

In the first method we transform the system of equations into normal co_rdln-

ates and then consider a Liapunov function which is the sum of the squares of

the normal coordinates. Bulgakov _ studied this transformation in detail,

but the work is in Russian and thus we will consider the discussion of this trans-

formation which %s due to Roitenberg, reference _.

Consider the system of linear differential equations

5- (v) _ =
K=I K

0 (j = i, ..., n) (27)

(o) L

where _j K(D) = bjK(t) D
+ b(IIt)D L-I

j_

(L-D
+ b(t) D + b(L)

jK(t)>

(s)
jK

(t) =

(s)
b

jK

(s)
(t) -- a

jK



(s)

where a_K are constants.

jK(D) =
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Then we r__jK01) aa

f (V) + L (V) ,
JK JK

(0) L (L-l) (L)

fjK(D).. = a JK D + . . . + a JK D + a JK'

(L-n (L)
LJK(D) . [,(01 L _jK(t) D + _jK(t)ix(t) D + o . , +

The system in (27) becomes

n n

f KCD) x -- _-- L K(D) z K (J - 1, ..., n). (28)
K-I J K K-I J

Notice that the fjK(D) are polynomials in D with constant coefficients. Consider

by

xg <g - 1, ..., N') and the conJusate _omplex eisenvalues by <_hii _h)

N' + N'_ We assume that the eigenvalues are distinct.(h " N' + i, ...,

We now transform the system (28) from the original coordinates, xj, to the

normal coordinates, _g'_h'_h (g = I, .... , N' 9" h = N'

The formulae relating the coordinates are as follows:

+ i, ... , N' + N").

N' N'+N"

_= N',I _js h
= i_ ... _ rt I, O, i, ..., m - i

J

(g) _(g) (¢9) _ (l_) (h) (h)x = x. _ , = N cos (_ ,_j S ] g --J@ j S j h ) '

_(h) (h) (h)
= N sin ( _ + 0 _h ) ,X j© j_ j

N_ h) = N!h) C:

where Ch and _ h are determined by

i%h
_h + f LO h = Ch
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--(g)

The quantity Xj is the j t__helement of the non-zero column matrix X_ of the

-° _j- (g) i (h)
adjoined matrix F(Kg) constructed for the real root Kg. The quantity Nj e- =

_(h) (h)

j + L Yj is the jth element of the non-zero column matrlx_h of the adjoined

matrix F(6h+ i &Oh) constructed for the complex root 6 h + i cOh. The quantity_ is

the order of the highest derivative of xj on the left-hand side of equation (28).

The right hand side of (28) transforms to:

n

K=I

N !

g=l
NV+ NVV'

Finally, the system in normal coordinates is given by:

D = _g

n (g) K1

w- _ C n t,.x

Re A (D) K=I k k

D=_+itO

D - & -iu )
h --h

(D)

h h

-7

K mj,

& h+ i,_h

(29)

(h = N' + i, ..., N' + N"),

where A _) is the determinant of the operator matrix If jK(D)J o

v=-1/2 + _ (_h + h) "
h=N' + i

S_nce V is always negative definite, the stability of the system can be exami_:

We then choose as a Liapunov function the following:



t

by considering V with respect to system ,(29).

\

Example [9]
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Consider the system of differential equations:

axl + x2 = O,

Xl - b/a x 2 - bk/a x 3 + bk/a x4 = O,

- M(t) x I + cx 2 + x3 + cx3 = O,

x4 + c x4 = O,

where M(t) is bounded and we assume that IM(t) I _- fa. Thus, the third

equation in (30) becomes.

" faxl + cx2 + x3 + cx3 =5(t)x I ,

where S(t) = M(t) - fa. Then - 2fa __ S(t) _- O. With this modification,

(30) corresponds to system (28). The eigenvalues of the matrix [fiE(D)]

are the solutions of (D + C) {D 3 + CI}2 + b(l- fk)D + (i-k)bcJ = Oo

Assume that this equation has two real roots and one pail of complex-conjugate

complex roots, denoted by K I, K 2 , _ + i UJ ; and let KI = - C. Thus the

transformed system in the normal coordinates _ i' _2' _3 ' _ is given by:
1 3

where the equations of transformation are

Xl = (f _2 + C), a 1 3'

_2 + C

X 2 k

(30)
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x3 = _i + _2 + _3 ' x4 = _i'

and where

M1 = _3 2a _ E + c(l + f)

f _ _M2 = _ f _ + 2c_ + e
ab

N1 =-

2 2 2 t+ (c + f U0) _ -- c CO(I - f) ,

+ fU._

-fI f 6 + c(l + f)_ + c2 + f 03
L

N2 = - 6,9____C[ _ 2 2 2 2 2
t JI - f , L = f _ + 2cf _ + c + f to,

a2 -- - A2_<f/2 +_ c{a e ..,' a3 = A2_I ' a4 = A2M2'

- --I_2(_2 + C)a 1 b3 = A3N i b4 = A3M 2 ,
b2 = A3 (f _2 + c) '

c2 = A4[(f _2 _ c_ :). c3 = A4MI' c4 = A4M2'

.__j r ._ -7

A 2 = T2_r_' 2 + c) bk, A 3 = Lit _ + c) T 3 + £uJT 4 j bk,

A 4 = [<f 6 + C) T 4 - fLOT 3_ bk ,

T3 =

(_+ =)(E- _2) -uo 2

[c_+ o)<_-_<_)-_]_+ [_- _ + o>_3_
Select the following Liapunov function:

v --- 1/2_912 ÷
t

_2 2



where

A

o
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0

0

0

- _2- a2S(t)

-½(a 3 + b2)S(t)

-½(a 4 + c2)S(t)

0

-½(a 3 + b2)S(t)

- E - b3S (t)

-½(b 4 + c3)S(t)

0

-½ (a4 + c2)S(t)

-½(b 4 + c3)S(t)

- _- c4S(t)

For asymptotic stability of the trivial solution of (30), _he matrix A must be

positive definite for all _ >i 0.

The followin_ al_orithm [10]is similar to the above work. Here we consider

the system

= A (t) x ,

where A(t) is realo Since A is a square matrix, there exists a transformation

-i

matrix T(t) such that the similarity transformation (_ A T) takes A(t) into

-i

a Jordan canonical form; that is, the matrix _ (t) = T A T consists of one or

more Jordan blocks which are square arrays of the form

i 0

o 1

o o

0 0

where _ is an eigenvalue of A_.

0

•

0

1 • °

0 . .

0

0

k

These Jordan blocks are located along the principal

diagonal of _(t) and all the elements not contained in the Jordan blocks are

equal to zero.

We define the matrix P(t) by

P(t) = T (t) T (t)

(31)
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where (*) denotes the conjugate transpose of T. The Liapunov function to be used

in the stability studies is defined as

V (_, t) -- _x P (t) x .

From the properties of the transformation matrix T, it can be shown that V is bounded

and positive definite. The time derivative of V is given by

=- _ _(t) _,

where _(t) = IT- _ M(t) T-I and M(t) = - E_(t) + _ (t)_ + E_ "I _)+( -i_ _.

If M(t) is positive semidefinite, the system is stable. If M(t) is positive definite,

the system is asymptotically stable.

Example

Consider the system

° I °
a(t) I _'_"

The matrices _(t) and T(t) are given by:

0 0

0

The resulting M matrix is

a(t)

, l(t) =

Ej _j.] 0 oM(t) --- + _-
0 -2a(t)

thus, the system is stable when a(t) _ 0 for t >i 0.

many cases where _M reduces to the form _M = - _J + fJ
NO_______There are

occurs when A(t) is time invariant, A(t) is symmetrical for all t >i

A

This form

to, or when

= B C, where B is a time varying symmetrical matrix and C is a time invariant

positive definite matrix, or vice - versa.



Wegive two variations of this method, _4"
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Let V_, t) be the Hermitian form

e_(t)vQ, t) = x* P (t) x ,

_( *x, t) ---x _(t) x ,

where P is given above and _(t) is such that Q is "just" positive semidefinite. The

Q - matrix is given by

We choose_(t) as the instantaneous minimum of the solutions, _, of the equation

•

Det - <{ + _J*) + T-IT_ + (l"li)*

thus, the system (31) is stable if

lim [ _(T) - _(to)_ _ O.T ------__

lhe other variation, [i0], is as follows:

-I
as before we define T(t) by the equation _ = A T and we let V_, t) = _x* P(t) x.

The time derivative of V is taken to be V _, t) = - _x* _(t) _; but instead of defining

P(t) by T* P T = _, we let T* (R + _) ! = I and define the matrix D(t)

as D = T* P T. Now if Re(_) is a non-singular matrix, D(t) can be computed from

the formula J* D__ + D_ J = - _I and Q is given by

Q(t) = (T*) ! + D_ - D T-_i -(T_ i)* D_ l

Then if it happens that Q is positive definite for all t >.. to, the following criterion

on D will determine the stability of the system:

(i) if D is positive definite for all t to and decrescent(ioe., x* D x --_ 0

uniformly in t as x* _ _ 0), the system is asymptotically stable;

(2) if any eigenvalue of D is negative for all t to, the system is unstable.



- 39 -

The following algorithm is due to Szego,_12]. Consider the linear, nonautonomous system

= A(t) x , (32)

and introduce the following quadratic form

v t) =xT_=(t)_x,

where c(t) is the solution of the equation

(33)

The function _(t) is a positive_ differentiable scalar function; B is a symmetric

matrix to be determined; _. s •B) denotes the Schur's product of _ and B ([)e_, _h_

matrix formed by multiplying the corresponding elements of C and B_); and the matrix

is symmetric. The solution of (33) has the form

C(t) = _ (t) G (aij, bij ) ,

where A = [aij J and B = [bij ]. We shall denote _ (aij , bij ) by G(t). When

computing G(t) we fix some elements of B(t) we fix some elements of B(t) to assu_e

..... gii _ v k_ = i, ..., n) for all t _- to. fne other elements of _ are

arbitrary and one then can compute _ from (33), where _is to be determined later.

V(_, t) will be negative definite if the matrix D(t), given by

D(t) = G(t) • s -B(t) + G(t) + _(t) GCt)

where _(t) = _(t)/_(t), is positive semi-definiteo 0ne chooses the value of

_(t) such that D is positive semidefinite and then computes_(t) o Thus, V is

negative definite by the choice of _; then the matrix G(t) is examined to determine

if V_, t) is positive definite. In summary, the sufficient conditions for asymptotic

stability of (32) are:

n

I I -G2K(t) >0, K = 1, ..., 2 for t

/°
2K+l 2

to, and even n

>/ to, and odd n;

and if the order of G is even, I G I > _ > 0 for all t >I to, and if the order

(34)



of G is odd,

for all t >/ to. The IGi(t) l

determinant / G I .

Example[1 3

Consider the system:

xI = x2 ,

½2 = PI (t)_xl + P2 x2 ;

where Pl(t) is a differentiable, bounded, always negative, and decreasing function

of t, and P2 is a negative constant. The form of V_, t) is:

-40-

IGI <- _ < O for all t > to; and- _ < (t) dt

o

(i = I, .o., n) are the principal minors of the

2 2

V_, t) = Cll(t ) x I + 2c12(t ) XlX 2 + c22(t ) x 2

From (33), we compute G.

gll (t)

For simplicity, let b12 = b22 = O, then

(t) - P22 1

PI (t)1

Pl(t) - 2}

2= _ PI (t) - PI

gl2(t) = _(t) 2P 2 - bll(t )

g22 (t) _ bll(t) +

where _(t) = 2 f2P1P2 + bll[P 2 - P1J}

Choose bll such that V is positive definite and then examine the restrictions which

must be placed on the system to make V negative definite. To satisfy (34), let

bll = 2pl 2 The other conditions for V to be positive definite reduce to

2

gll g22 " g12 >

where_is a positive constant.

Pi's:

for t >i to,

This inequality yields the following condition on the
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2 3 2 3 4 2 3
2Pl - Pl - PlP2 + 3Pl P2 " Pl P2 - Pl P2

6

-- Pl " Pl > _ for t >/ too

The remainder of the computational procedure will now be outlined.

The D(t) matrix can be expressed in terms of the elements of G, B and the

unknown function _. The semidefiniteness of D and equation (35) impose restric-

tions on the _ - function. From these restrictions on /, the /- function can

be determined. Finally, the C matrix can be determined from _and G. Thus, from

the V_, t) function, formed from matrix C, the conditions for the stability of

x = 0 can be decided°

(35)

Example [123

Szeg_ found that for systems of the form studied in the above example, a

simplified procedure can be followed.

Xl = x2,

x2 = al(t) Xl +

Let V(_, t) have the form

2 2

V = x I + c22(t) x 2 •

Then, V becomes

Consider the second order system given by:

a2(t) x 2. (36)

= 2(1 + c22ai ) XlX 2

!For a semidefinite V, let I + c22a I = 0 and 2c22 a2 + c22
I

resulting sufficient conditions for stability are

- 2a2 + _I 1

>

+ (2c22a 2 + $22)X22.

< O, for t >i to,

K2(constant _ > O, for t

< 0.

>i

Thus, the

to.
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Special Case of (36)

Consider the system

Xl = x2 '

+f= t (at - l)
sln(ct_1 x2

(37)

The stability conditions are

2b sin ct - I _ 0 ,

t > K2 > 0 .
at -i

The conclusion is that the solution x = 0 of the system in (37) is stable if

b _ 1/2 and ato > I .

We now consider the work of Kupsov, reference _3], in which he considers the

following system:

(t)
all

a2_ t)

(t)
al2

(t)
a22

(38)

Theorem 30 LI3]

"If there exists a constant M and a positive function S(t) which has a

continuous derivative on (0, 00) such that

+ all - a 2 + S (a21 + Sal2 ) - 2-_ + all + a t

o

_M

for all t > O, then the trivial solution of (38) is stable relative to x I.

Further, if

t _ 2 1 _+ all- a2 + S (a21 + $a12 ) + 2-S + all + a2 dt_M,

(39)
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then the trivial solution of (38) is stable relative to x2."

Notes Concerning Kupsov's Work

(i) The proof of Theorem 30 is based on Liapunov theory and the choice for the

Liapunov function is V = x T P(t) x,

Where P = A(t) B(t)

B(t) C(t)

The necessary and sufficient conditions for the trivial solution of (38) to be

stable relative to Xl and x2 are that C(t)_ _ P and A_p i be bounded,

respectively. It can be shown that C/$ P _ is bounded above by
1 l 1

(2)

!K exp i_

2 1 71/2

+ all- a2_ + S (a21+ _a12)i2j+

7

where K is a specified constant. A similar bound exists for A/ IP! .

(3) If a21/a12<O and has a continuous derivative on (O, OO), we can choose

S _ - a21/a12 and thus simplify (39).

(4) in the special case where equation (38) reduces to

"x + P(t) x + q(t) x = O,

The conditions for stability relative to x of the trivial solution reduce to

q(t) >

oo

°/° + + 1 < OO.

(5) Leonov, refer to [13], also studied '_40) and obtained the following

results for stability relative to x:

q(t) > O, p(t) +-_$(t)/2q(t _ >i, O.

(40)

(41)
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If (41) is satisfied and q(t) is boundedin (O, OO), then the trivial solution of

(40) is also stable relative to x.

-2
(6) If the Liapunov function of (40) is chosen to be V = x2 + I/q(t) x ,

then V will be positive definite when q(t) > O. V = - _q2 - 2 p/q.

the trivial solution of (40) will be stable if q(t) _ 0 and

+ 2 P_/ l >i0
q(t)

q(t)

Thus,

Work of Narendra and Goldwyn [14]

In this work the existence of "Conunon Liapunov Functions" for linear time-

varying systems is discussed. The concept of the "Common Liapunov Function", CoL. F.,

was discussed in Section 5 of this report and will not be repeated here. We will

flrs._.._tsummarlze the topics which are discussed in reference _4]; and then we will

give a few of the time-varylng examples which are presented in [143. The results are

as follows.

(i) For a negative feedback system with G(s) in the forward path and a gain

K(t) in the feedback path (O _ K(t) _ _), see figure #i,

U

I Figure #i
Time-Varying System

it is shown that a sufficient condition to ensure the existence of a C.L.F. and

hence stability is that [I/ + G(s)] be a positive real function. A geometrical

L/ J

interpretation of the above condition yields a simple and effective method of

determining the range of stability from the frequency response of the time-invariant

part of the system.

(2) For speclflc time-varying systems, Liapunov functions that are explicit functions



The origin of this matrix equation is as follows:

= F(t) x

and choose as a candidate for a Liapunov function

= - x. Q(t)

where _ is chosen to be semi-definite.
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of time are found to increase the stability range of a parameter over that given

by the C.L.F. An analysis of the behavior of the Liapunov function V in the

V-V phase plane yields further insight into the problem of stability and leads

to the generation of Liapunov functions for an additional class of time-varying

systems.

The problem of determining the entire range within which periodically varying
.'

parameters may lie while assuring stability is intimately related to Floquet

theory. The generation of time-varying Liapunov functions in such cases requires

the solution of a matrix differential equations of the form

consider the system

between P, F, and _.

Xl = x2'

.Example [14,]

Consider the system

V = xT P(t) x. One then obtains

X ,

Thus, we obtain the above relationship

A C.LoF. can be found for the system when

may be taken as

XV = xT

The C.L.F.

13

U
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and

= _ x T

2 _(I + _(t)) 2_ 2 + g(t)

2 + L(t) 2

X •

For I _(t) i < 2 _ I i - _2 V, < 0 for any x and hence the null solution is

asymptotically stable• (It can be shown that no non-trivlal half-trajectories of

the system lie on the set of points for which _,' _ 0o)

Example 043

Conside_ the equation

xI = x2 ,

x2 = - b(t)Xl - ax2.

Let V (_, t) be of the form

2
a

V=_x T

a

(i) For the case when

2

2
x + 2 B(t) xI

B(t) = i/t _o t b(u) du,

we have

V=-2x T

b - B a

b - B

X •

m

> O, the above system is asymptotically stable.
_J

(ii) For the case when B(t) = b(t), the condition for asymptotic stability is

b _ a > O.
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Workof.ohrer and

In reference [18], Rohner considers the undriven, single loop, linear time-

variable network in Figure 2. The terms in the

q(t)

Figure 2

circuit are defined as:

q(t) _ unknown current

_(t)

L(t)

c(t)

time-varying resistance

time-varying inductance

E time-varying capacitance.

Rohner uses the Hamiltonian formulation of analytical mechanics to determine the

stability criteria of this time-varying electrical network° Upper and lower

bounding functions for the network's stored energy are obtained which lead to

sufficient conditfons for network stability. The term stability as employed heYe

means asymptotic stability in the large of the zero state of the network--where,

if an unexcited network is given an arbitrary initial stored energy distribution,

E(to), there is a net decrease in this energy over a given time interval, E(t) < E(to),

t > too

We now give a very brief outline of this work. The defining equation for

the system is

d fL(t) _ + R(t) q + I q = O.

From the analytical mechanics approach, the Hamiltonian, _(t), is given by

_(t) : exp [L(x)

:.... O
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where E(t) is the stored energy in the network energy storage elements.

shown by considering certain properties of_that

E(t) _ E(to)

when

C(to)
C(t)

It can be

+ + 2_R >/o.
C L L

Then_C(t) E(t) is a Liapunov function; and for positive R(t), the above inequality

yields the Liapunov stability criterion

0 < 1

(Thus, we have presented only a brief outline of the work in [18J and is in no way

a complete summary of Rohner's stability results°)

In reference _ , Rohner considers a general R(t) - L(t) - C(t) linear,

continuous time network. He studies the stored energy of the network)by considering

upper and lower bounding functions_to provide sufficient conditions for stability

and instability. In particular, if the stored energy decreases on the average, the

network is stable; conversely, if the stored energy increases on the average, the

network can be said to be unstable. This stability can be considered to be "asymptotic

stability in the large." In the following paragraphs, we briefly outline Rohner's

procedure. CThis procedure is related to Liapunov theory and thus is presented in

this report.)

The energy analysis on the loop basis starts with the second-order matrix

equation:

_[ L(t) + R(t) i + S(t)

The terms in (42) are defined as follows:

L(t) _= n x n inductance matrix,

S_(t) - n x n susceptance matrix,

R(t) =- n x n resistance matrix,

_(t) =_ n x i link-current matrix,

q = O.



- 49 -

where _ and S are symmetrical and positive definite° The network stored energy

is given as

where

:

We introduce an arbitrary time dependent function f(t), and integrate d(f E)/dt

from<to) to ItIto obtain the following:

f(t) E (t) = f(to) E(to)

t

+_ _ _ L+
o

_t

dt.

The formulation in (45) leads to the following upper and lower bounds on the

network stnrpa energy if the congruent matrices AI_ =_A B(_ ==_4=_,_ eh=

following conditions:

_T L A = I (the unit matrix) ,

where AI_ is a diagonal matrix which has the n roots of

as entries; and

_BTS _B = I_,

_ _ ___<t)

(43)

(44)

(45)

(46)
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where_---2 (t) is the diagonal matrix which has the n roots of

det I_2(t) S + S_ I = 0

as entries. The upper and lower bounds on E (t), for the proper choices of

(47)

f(t) in (45), are given by:

E (to) exp -

0
(x) dx _ E (t) f-- F(to) exp o Au(X) dx

where k is the maximum root of the equations (46) and (47), and _u is the minimum

too t.

We now outline the energy analysis on the node basis. The set of network

equations is given by

where

= n-vector of tree - branch voltages,

C(t), E(t) _ positive definite, symmetrical matrices.

(48)

The stored energy can be written as:

where

2 T-- - -- - - °

Proceeding as before, we obtain the following bounds:

(49)

0 L o '

where X' is the maximmm root and A' is the miniu_am root of the equations
L u
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and

From the above bounds on the stored energy, we can obtain some simple ground-

Istate stability criteria. The upper bound of E(t) is given by the larger of

I _u(t)_ _'u(t) at each value of t, call the value U(t); and the lower bound is given

Iby the smaller of _L(t) and _ L(t) at each value of t, call the value L(t). If one

considers the net decrease in stored energy over [to, tl]as an indication of

stability, then a sufficient condition for stability is

tl U(x) dx

to

> O.

In a similar way, a sufficient condition for instability is

For asymptotic stability (50) becomes

dx < O.

lim f tt ----_ _

to

U(x) dx > Or

For a periodically variable network where all element (in the electrical system)

values vary with the same period T, thus U(t) and _(t) have the same period T, _&

the sufficient condition for stability becomes

/ i+Tou(x) dx > O;

that for instability becomes

+ T

t° g (x)
o

dx < Oo

(50)

(51)

(53)

(54)
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[15_ Mathieu' s Equation

The normalized form of Mathieu's Equation is

%" + (S + 6cos t) q -- O.

In this equation L(t) = i , C(t) = i

S + 6 cos t

and R(t)

and

= O. Over the first cycle the energy is bounded by

E (t) L
E(o), o _ t---'r

Is +-_cos %1,
_.E'(o) s

_r__t __ 2Tp

E (t) >i

S + E cos ±

(O) S + E , 0 _- t __ _"S - E , 77"__t _ 2_'.

(o) s +

These bounds give no information about stability of this network except the "almost

trivial" case where 6 = 0.

But if some fixed resistance R placed in series with the above network is

considered, stability can be guaranteed. This resistance can be found as a function

of S and 6 by ascertaining the minimum R which assu_es that £-(27r) = E(O) o From (53),

this R is that which makes

27r

_ i min [2R, _sin t 1 1 dto S + E cos t

and it is given by

therefore,

2R = max

I E sin t t"I .s + E cost

= O,

R >

2 / S 2
- E 2
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This is the same result which has been derived from Liapunov analysis

Work of Bongiorno E19]

In reference [19], Bongiorno considers an analytical technique for establishing

the stability of linear, lumped - parameter systems with periodically - varying

parameters, by means of analytically or experimentally determined frequency response

data. The theory as given is not Liapunov theory; but in one example, Bongiorno's

results are justified by Liapunov theory. QFor this reason, we include his work in

this section of the reportO The basic time - varying system is given in figure 3:

r(t) + e(t) ke =m

Time-Varying Linear, Lumped
Gain With Constant Parameter

Period T System

..I

Figure 3: Basic Time-Varying System

The application of the stability criterion yields easily obtainable bounds

on _.L= amp_euaes of the periodically - varying parameters that are sufficient to

insure system stability. The 'results which are obtained can in some cases be

applied to systems with aperiodically - varying parameters, as was vigorously

established for a certain case in reference

The fundamental stability theorem of BOrgiorno iS:"

c(t)

Theorem _93

"If in the system of figure 3, where k(t)

following conditions are satisfied:

_* K and k(t) is periodic, the

for K = O, the undrivem system is asymptotically stable; and
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(2) for 0 _ K _ KM , no steady-state solution of the form __ _(t) is possible,

then for all 0 _ K _ KM the driven system is stable for all bounded inputs."

A sufficient condition for the satisfaction of condition 2 in the above theorem is

K I G (J _) Imax < I

The derivation of this result is given in _9].

(56)

Example [19]

Consider the system

2

In this system, the expression for G(s) is

wo 2
G(s) =

+ 2

It can be shown that IG (jW) I max

IG (J_/) I max = I

is given by

, 1/¢r

2_i -_2

Thus, from inequality (56), the conditions for asymptotic stability are

sl

By means of Liapunov theory, it is_nearly possible to reproduce the above

stability conditions° Liapunov's theory yields slightly more conservative results

in this case. We first consider two theorems before applying Liapunov's method

to (57).

(57)

(58)
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Theorem

"If the system is defined by

x" + a x + b(t) x = O, (59)

and if 0 < m _ b(t) _ M, then the solutions of (59) are asymptotically

stable for all(alsatisfying:

o < /V - <

< M + 2vr_ + 5_ "

a <

(60)

Theorem

"If 0 < b(t)

Proof

2
< a , then the solutions of (59) are asymptotically stable."

Write (59) in the following form:

XO = X I (61)

Xl = -ax] - b(t) Xo=

2

iChoose the for (61) to be V = Xo2 + (2/a) + (2/a2)Liapunov function XoX 1 x1

The time derivative is

" _ x°2 Xl 2 _
V = - _ b + 2b XoX i +

a a

For asymptotic stability we require

b (1 - b/a 2 ) > 0 ,

or 0 < b(t) < a 2. QoE^D.

When b(t) = V_o2_l - k(t)_ and a = 2_ _/o

in (59), (62) yields

2
!

0 < 1 - k(t) < 4 _ ,

or

i + K < 4 _2t.1 -K > o

(62)

(63)
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The inequalities (63), obtained by Liapunov theory, are nearly the sameas the

inequalities given by Bongiorno's theory in (58).

Bongiorno in reference [19] also considers two other exampleswhich will not be

given here. One exampleconsiders more than one parameter varying with time; and

the other considers a higher order time-varying system.
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MISCELLANEOUS SECTION

SUMMARY

In this section we have considered several different methods of obtaining Lia-

punov functions. Some of the work in this section could have been pla_ed in other

sections of the report, but because the time element this work has "landed in" the

miscellaneous section. The "physical structure" of this section takes the following

form:

(i) a compendium of examples, 32 in number, covering references [13to _2J ; the

"examples" may discuss the results of a single paper, some part of a paper, or

the results from several papers;

(2) a subsection titled "Random Contributions to Stability Theory" which includes

items which are briefly outlined; the discussion covers references [53] to [149] ,36

including contributions from some Italian mathematicians during the years

195i - ]961"

(3) a subsection outlining the contributions to .qtnchastic stability, references ,[15_-

I"1afi

(4) a subsection outlining the contributions to partial differential equations,

_82] to _96_ ; to differential-difference equations, [197_ - [226_ ; to topological

dynamics and dynamic systems, _27J to _39]
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COMPENDIUM OF EXAMPLES

Example I_ 12] Third Order Example

In reference LI] , Pliss proved the following theorem°

Theorem

(H) (i) If, the system is defined by

(c)

"x° + f(x) _ & + x = 0;

(ii) f(y) is continuous and differentiable for all y;

(iii) f(y) satisfies a Lipschitz condition for all y;

(iv) f(O) = O, and d f > i for all y;

dy

then the equilibrium solution x = x = "x = O is stable.

Ogurtsov, in reference [2], considers a more general case in the follow-

ing theorem.

Theorem

(H)

(C)

(i)

(ii)

If, the system is defined by

"_+ f(_) + bx + a x = O;

a > O, b > O and constant;

(iii) f(y) is differentiable and continuous for all y;

(iv) f(y) matisfies a Lipschitz condition for all y;

(v) f(O) = O, and d f > a/b for all y;
dy

_hen the null solution is asymptotically stable for arbitrary initial

perturbations.
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Proof

The equivalent system is given by

x--y
!

y= Z- f (x) y

Z = - by - ax.

The candidate for a Liapunov function is

X

_O ' by2 22V = 2a x f (x) dx + 2axy + + ,

where V is positive definite by hypotheses (ii) and (v). The time derivative

of V corresponding to the above system is given by

= - (x) - a y < O

= 0 for y = O.

, y # 0 ,

Since 2V can be written as

2V = J(x)

J(x)

2f,x t2+2+ 7%_ Y '

x , 2 2
= 2a x f (x) dx- a___ x ,

b

O

we must check _im J(x) . If Lira J(x) = oo

Ixl--_ _ _xI--_ oo
then V is infinitely large and all the level curves, V = constant, are closed,

thus giving asymptotic stability in the whole space.

If Jim J(x) rConverges, then among the level surfaces of V there

Ixl---_ oo
will be open surfaces. But it can be shown that in general there is still

stability. The author considered the region defined by

V(x, y,_) L _, Ix I z N, _ >O, N O.

He showed that for all t > O, all trajectories of the system are inside

the bounded region. Thus, the theorem is proved.
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Example 2_ _] Fourth Order System

The fourth order example of Ogurtsov is also stated in theorem-form.

Theorem

(_) (i)

(ii)

(iii)

(iv)

(v)

If the system is given by

"_" + f(x) + c_ + b_ + ax = O;

f(y) is continuous and differentiable for all y;

f(y) satisfies a Lipschitz condition for all y;

f(O) = O; c, a and b are positive constants;

df > b ; bc df b2 - a_df}2dy c dy (_Y > 0 ,

for all y;

(c)

perturbations°

Proof

Let us consider the equivalent system

x = y

9 = z

• l

z = u - f (y) z

u = - cz - by - aXo

The candidate for a Liapunov function is

then the zero solution is asymptotically stable for arbitrary initial

2V = -(b2 + ac) x2 + 2bcxy + (c2 - 2a) y2 + 4ax_ +

Yo

2 2 _ '

+ C _+ 2bxu + 2cyu + 2u + 2b Jo f (y) ydy ,

2by_ +



Ixy uJ

b2 + ac bc

2

bc c -2a + b /c

a b

b c

b

C

0

b

C

0

2

x

Y

U

+

+2b Yl 'f (y) b/c I y dy .

From hypotheses (iv) and (v), we see that V is positive definite and

V -. _ Oo as //x_// --_.oo.

with respect to the system is given by:

!

= - abx 2 - 2af'(y) x _ - cf (y)2+ b _2

The time derivative of V

a[bx2 + 2fCy)x_ + b2 --cf'f+ b_2+
a 2 2
_(f') _,

m i ! ! --

= - a _- x + _-- f (y) _ bcf (y) - b 2 - af (y) _2

Thus, by hypotheses (iv) and (v), V < 0 if x and z are nonzero and V = 0

if x = z = O. Therefore, the zero solution is asymptotically stable for

arbitrary initial disturbances.

Example 3, [3] Ezeilo's Fourth Order Examples

In reference [3], Ezeilo discusses two examples; these examples will be

written in the form of theorems.

Theorem i

(H) (i)

(ii)

If the system is defined by

.... _._}... (_)x + f x + _2 x + g + _<4 x

2 and °<4are positive constants,

= O; (i)
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I

, and g (y) are continuous for all y,

(iv) g(0) --0 and there exists o< I > 0 and

such that

Y

> o<
/ 3 , Y O, and

f(_) >/ olI for all _ ;

(v) there exists a positive constant /kQ > 0 such that

o

(vf)

(vii)

for all y andS;

g (y) - _ 4 , for all y ;£ 0
Y

where 0_1 < 2 c_4 _0 ;

Ifi If(x) dx - f(_)

o

<. 1
(C) then every x(t), solution of (i), is such that as t _

(x, x, x. "_') _ (o, o, o, o)

o<3>0

Special Cases of Theorem I

(i) When f = _I = constant, (vii) is trivially fulfilled. This is a case

which was discussed by Ezeilo in reference E5_.

(2) When f = ql and g = °<3x , o< I and °{3

being constants, the equation (i) reduces to the linear pmoblem considered

in the Routh-Hurwitz analysis.

Theorem 2

(H) (1) If, the system is defined by

"_" + f(_)'_" +_2_ + g(x) + _<4x = p(t) ;
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(il) hypotheses (i) _ (vii) in Theorem i are valid;

p(_) d'C _ A < o@ for all t >i 0 ;

(C) then for any finite Xo ' Yo ' _o ' Wo' there is a finite

constant D = D (xo , Yo ) Zo, Wo ) such that the unique

solution x(t) which is determined by (x (0), x (0), x(O), "x" (0) ) --

(Xo, yo,_o, Wo) satisfies Ix I __ D , Ixl _ D , _I _ D

ITi D for all t > 0.

If the following discussion we will give the Liapunov function used in

the proofs of the theorems, and we will outline some of the major points of

the arguments. But, since the entire proofs are very long, we will not rewrite

them.

The state variable notation or the equivalent first order systems, used

by the author are as follows: for equation (I),

9=5, w,

= - w f(_) - o(2_- g(y) - °<_x ,

and for equation (2),

x : y, y =_, $ =w,

= - w f(m) - _<2 e -g(y)

The Liapunov function used for both (i) and (2) is

2 dl)y22V -- =<4d2 x + (o(2d 2 - o(4 +

Y

-_4 x + p(t)o

f (N) dN +
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+ 2 d 2 y / f(N) dN

O

+ 2dl_g(y ) +_ 2d 2 yw + 2 _ w ,

where d I = & +

Lemma i

'The function V d_fined in (3) satisfies the following conditions:

(i) V(o, o, o, o) = O;

(2) there exists positive constants DI, D 2, D 3 and D 4 depending

on E , 0< I, °< 2, 0< 3 , °<4' SI ' _2 ,

and _ such that
O

(3)

V > DI x2 + D2 y2 + D 3 _52 + D4 W2 ,

for all x, y,,z, w provided O<_i , where _I is a function

of _i' _j and _o'"

The proof of this Lemma depends on the following important inequalities:

d I - i/f(_) _ _ for all _ ,

d 2 " _y)>/ _ for all y / 0 ,

!

2 - dig (y) _ d2 f(_) >/ /_ o D o6

°<I _<3

for all y and _, and where Do is a

function of the_i.s.

Lemma 2

'_fhere exists constants D 6 > 0 , D 7 > O

depending only on 6, o_ i' o_ 2' o< 3' °<4 and

, D 8

O

>

such

that for solutions of (i) we have

O



2
-._ -- (D6Y

provided O < _ _ _ 2 , where

°< I, 0<2, 0<3, 0<4 and _o'"

The rop_fl_ of Theorem I is such that if

"9 -

2 DSW2)+ D 7 _ +

2 depends on

_ Min (EI,6 2 ),

then V is shown to be a Liapunov function and equation (i) is globally

asymptotically stable.

The proof of Theorem 2 makes use of the same V as in Theorem i, but

the time derivative of V varies; that is

(V) = (V) + (d2Y + _ + dlW)p(t).

Thin.2 Thmo i

Because of hypothesis (iii) in Theorem 2, we have that for any t,

(V) _ O. Thus, Theorem 2 is proved.

Thin.2

Example 4, [4] Ezeilo's Nonautonomous Syste m

In this example we will consider a nonautonomous system defined by:

__ = _f(_, t) ,

where _, _ and ! are n-vectors_ We assume that ! and the Jacobian matrix

off existandareco.tinuo sTheno , IIxll • of x is defined by

2
2

IIxll = Xl 2 + x2 + . +x n o As in the previous examples we will

state the main results and merely outline the procedure used in the proofs.

(i)

Theorem i

(H) (i)

(ii)

If A = ( o< lj ) is a real, constant, symmetric, positive definite

matrix;

--J "[_l is the Jacobian matrix of f(x, t);
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(iii) D = A •J

of 1/2

(iv) C I _ C I

= (dij) where each characteristic root

+ _DT) satisfies,

_K -< _$ <0 uniformly in x and for t >i to;

(#, to, A, x° ) > O,

(_,_A) > 0C2 _ C2

0( _ largest characteristic root of A,

(c)

p is a constant such that I A p & 2 ,

is a constant such that 0 _ /__. $ ;

then every solution x(t) of (I) satisfies

/II IJ
x(tl __ _ ' C I + C_ o _f(o,'t')

for all t >I to.

i/p

Special Cases

(I) If f satisfSes oneor the other of

IJ fJ JJm a x f (0, t) < OO, or f(O, t) dt

to

< Oo

then the conclusion of Theorem I says that every x(t) satisfies

IIx ]1 _. C, where C depends on f and A, and C is a finite,

positive constant. That is ]] x ]] is bounded for all
; ' M

t _ to.

(2) If f satisfies f_, t)

that every x(t) satisfies x(t _ 0 as t _ oo

In Theorem 2, Ezeilo specifies the sufficient conditions for

II

for all t >i to , then Theorem I implies

O,

(2)

(3)
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Theorem 2

(H) (i) If for any b, 0 _ b

and uniformly in t

< oo, f _, t) satisfies

I1 11
to;

b

(li) _ (b) is a continuous function of b;

/=//(iii) f (0,t) dt < _ , p _ [I,2] ;

to

(iv) conditions on A and _ given in Theorem I are valid;

(C) then every solution of (I) satisfies x(t) _ O_ as t _ oo.

Special Case

Let _ = F(x) + _(t) where F and _ are continuous vector-valued functions.

Hypotheses (i) is satisfied if //e_e,J/ is finitely bounded for all

sufficiently large t, and (iii) is satisfied if

_iF(0) + _-- (t) dt

O

OO

moo _os,,_+ in the following Len_na is ....._-^; =--.......... L=_=_=u _uL the determination of V in the

proof of Theorem I.

Le_Hna

(H) (i)

(ii)

(iii)

If K (_, t) is a continuous real n-vector, with a continuous Jacobian

matrix G;

N is a finite constant, -- oo < N < _ ;

the characteristic roots of 1/2 (G + GT) are all less than or

equal to N, uniformly in _ and for t _ to;
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(C) then for any _ and h, we have

•[_ + h,t) -_ (x,t) h __ N /lhll2
T

In the proof of Theorem i, we consider the following positive definite form:

V(t) = x T A x ,

where x(t) is a solution of (i). Since A is symmetric and positive definite, we

have

where _< > O and

2 !

xII v(t)  /lxll
o_' > 0 are the greatest and least

characteristic roots of A.
D

is bounded from above in the following fashion:

_4- _v+ c3

From the above Lemma and the hypotheses of Theorem I,

where C3 depends on A and is positive.

112

By considering V and V, we can derive

equation (2).

The outline of the proof of Theorem 2 is as follows_

of (5) is used; show that V(%-) d_- -- 0(I)

to

The V-function

as t ---a_oo ;

since V

2

o<llx II

>/ O, then V(t) must approach zero as t _ oo; since

, 2
V(t)

I* Ii

oi //xll , then x _ O_ as t _OOo

Example 5, [6]

In this paper Ezeilo considers the equation

"x" + f(x, x) "x" + g(_) + h(x) = O.

He proved asymptotic stability in the large for the trivial solution, x =

as suming:

(i) the generalized Routh-Hurwitz conditions are satisfied;

O, by



(2)
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sufficient conditions are satisfied such that the candidate for the Liapunov function

is radially unbounded in the phase plane. (Because we have not seen this paper

[6] , the above information is all that we can report.)

Example 6_ _] Bellman's Vector Lyapunov Functions

The following discussion is an outline of Bellman's paper

on Vector Lyapunov Functions.

Bellman states that the second method of Liapunov depends upon the fact

that a function satisfying the scalar inequality

du < K_, _(0) = c

dt

/

is majorized by the solution of the equation

d__v = Kv, v(O) = Co

dt

Bellman says that in some cases it might be more convenient to use a vector

Liapunov function rather than a scalar function° If it is, then a vector analogue

of the above majorization relation should exist° It has been proved that this

8ns!ogue does exist_

We first consider a lemma for nonnegative matrices° Let A be a

At

constant matrix and _ be the corresponding matrix exponential° It is

At

known that e is the solution of the matrix equation

d_____= A _, _(0)= _,

dt

At

where __.__ is a square matrix. For the elements of 0_- to be nonnegative

it is necessary and sufficient that _ij _ O'i _ j o

Lemma

If _lj > O, i _ j , then

dE

dt
i A x,_x(O) = _C, x (N - vector) ,
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dx = _ X , Z(O) = _"

dt

(Here x < X means component-by-component majorization.)

As an application of this lenlna, let the two scalar functions, u and v,

of t satisfy the inequalities

0 & U __ KI, 0 _ v _ K2,

and the differential equations

= - allU + al2v + blU v, u(O) = Cl,

= a21u - a22v + b2u v, v(O) = c2,

where aij >/ O, bl,b 2 >10, Cl,C 2 _ 0 From

Polncare-Liapunov Theory we have local asymptotic stability if the characteristic

loots of

A
m

- all al 2

a21 -a22

have negative real parts and CI and C2 are sufficiently small° Using the

above Lemma, we can obtain a nonlocal result. From (i) and (2) we have

6 _ - all u + al2v + blK2U ,

_ a21 u - a22v + b2KlV ;

and the solutions of (4) are majorized by the solutions of

= - allW + a12 _ + blK2W , W(O) =

that is, 0

= a12 w -a22 _ + b2Kl_ ,

u _ w and 0 _ v _ _= o

Cl ,

(0) =

The solutions of (5) approach zero

as t _ _ if

B

m

-all + blK 2 a12

a21 -a22 + b2K I

(i)

(2)

(3)

(4)

(s)
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. is a stable matrix. Therefore the Lemma implies that the solutions of (2) approach zero

as t _ _, as long as (i) is satisfied. This procedure can be generalized to

higher order systems.

We now consider the application of the Lemma to generating Liapunov functions.

Consider the system:

x = A x + B y + a (x, X), x(O) = a ,

-- _c x + D_ Z + h_,x),x(O)--_b ,
(6)

where _ and X are m- and n-vectors, respectively and matrices 4, _, _, _ are constant

an_have a_fo_:K_atedimensionso We now form two Liapunov functions

u = _XT R x , v = XT S X , ,. (7)

where R and S are positive definite matrices. We assume that the bounds on _ and X

are known; thus, the constants corresponding to K and h in (6) and analogous to the

K I and K2 in (5) can be determined. Therefore, a majorized linear system corresponding

to (6) can be obtained. Forming the vector Liapunov function, [u, v] , and making

use of system (6) and its corresponding majorized system, we can form relationships

for [u, v] which are similar to (4) and (5). From the '_ajorized" system for the

vector Liapunov function, [u, v], a set of o_"_;4_+._=_ conditions for the =_'_'"_"L=uZ_L

_ the nu 11_ solution of (6) can be obtained°

Example 7, [8] Leighton's Second-Order Equation

In this example we consider the equation

"x = r (x, x)

where r(x, y) is of class CI, continuous first partial derivatives, in a neighborhood

R of (0, O) and where r(O, O) = O. Equation (i) will be called regular in R

if _r(O,O) # O. Associated with (i) is the system
%y

x = f(x, y)

= r
f(x,y) )

_y

(1)

(2)
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where f(x, y) is of class C I in R, f(O, O) = O, _f(O,O) _ 0

The critical points, or equilibrium solutions, of (2) are the solutions

of the equations

f(x, y) = O, r(x, O) = O,

From (3) we see that the abscissas of the critical points of (2) are invariant

under the various choices of f while the ordinates are not° We note that in

most cases f(x, y) can be taken as y, and thus system (2) becomes

= y

y = r(x, y).

Further we suppose that r(x, y) _ 0 only intersects the x - axis, in R, at the

origin. Therefore, (0, O) is an isolated critical point of (4) whose stability

we wish to study.

In the following lemmas and theorems, an '_CL" function is a function, V,

of x and y which determines the stability or in-stability of an isolated critical

point of (4) by the theorems of Liapunov, Chetaev and LaSalle, as given in [9]°

(4)

Lema

"If (i) is regular, the function V defined by

_o x2V = yR - 2 r(x, O) dx

is an LCL function for the system (4) in the neighborhood of (0, 0)o"

(The time derivative of (5) with reference to (4) is given by the formula:

V = y Jr(x, y)- r(x, 0)_.

The proof of this Len_na will no_..!tbe repeated here. The summary of

Leighton's discussion of the regular system (4) is stated in Theorem io

(5)
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Theorem i

"If (i) is regular, and if (0, 0) is an isolated critical point of (4),

this critical point is asymptotically stable if _r(O,O) < 0

_y
and if xr(x, 0) < O, x _ 0 In all other regular

cases, (0, O) is unstable."

Note

LCL functions for system (2) can be written in the form

/ox2V = f (x, y) - 2 r(x, O) dx.

The time derivative of V along the trajectories of (2) is given by

t.
It is possible that the Y in (6) may be more useful and tractable than that

provided by f(x, y) = y, but to find that optimum f(x, y) is a difficult

task.

(6)

(7)

Special Cases

(I) In Van der Pol's equation

we observe that

and

°. x2x =6(1- ) i- x ,

r(x, _) = e(l -x 2)

r = _ (I x2),

Thus, an equivalent system is

_=y

E>O,

-X_

r(x, o) --- x.

(8)

= _(I - x2) y " x, (9)
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where (0, O) is an isolated critical point. Since _ r(O, O) = 6 > 0

_y
then, by Theorem I, (9) is unstable at (0, 0).

If we now consider 6 < 0 ; and if we let f(x, y) = y - _(x - x),

then system (8) becomes

31
x

= y - e (x/3 X)

Leighton found that a re_ion of asymptotic stability for system (i0) is the

interior of x2 + y2 = 3; that is, the region is defined by

x2 + _ + 6 (x_3

where x and x are taken as independent variables and

of the system of regions in (ii)o

(2) Lienard's equation is given as

mo •

x = - f(x) x - g(x),

where

r(x, x) = - f(x) x - g(x),

r(x, O) = - g(x),

_r(x,x) = - f(x).

X = y,

= - y f(x) - g(x).

An equivalent system is

If we assume that f and g belong to C I, g(O) = O, f(x)

2

x)l -_ 3

E < 0 is a parameter

> O, and that

xg(x) > 0 for x _ O, then the origin is asymptotically stable by Theorem I.

We are, of course, assuming (0, O) is the only critical point of (13).

The case _r(O,O) --0 is considered in the following theorem,

_y
theorem 2.

(I0
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Theorem 2

"Let _ = r(x, x) be such that r is of class C1 in some neighborhood

N of (0, 0). Let N 1 be the neighborhood N with (0, O) deleted, and suppose

(0, O) is an isolated critical point of the system

= y

= r(x, y).

If__.__Er > 0 in N I, the origin is unstable. If _ r _ 0 in N I,

_y _y

the origin is stable if xr(x, O) < 0 for all x in N 1

asymptotic if___r < 0 in N Io If _ r

%y _y

This stability is

takes on both positive and

negative values in every neighborhood of (O, 0), then (0, O) may be either

stable or unstable."

Examples of the Last Conclusion in Theorem 2

Let us consider x = x x + x.

where r(x, y) = xy + x and _r

9y

The corresponding first order system is

X =

= X.

Y

xy + x,

Since the linearized system corresponding

to (14) has a positive characteristic root, system (14) is unstable at (0, 0).

The system x = x x - x, whose equivalent system is

x = y

has a _r = - x.

-_Y 2
where V = xy .

= xy - x

2 2
The LCL function, (5), is 2V = y + x

Thus, we look for another Vo Leighton's candidate for V is

given by

2V = x - 2 y + log (I -y) > O

(14)

(15)
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for sufficiently small y's. The time derivative of V is V _ O. Thus, (0, O)

is stable. But in ho_h of _he above, examples, _.._Ertook on both positive and negative

_y
values in the ,_eighborhoo4 o£:.(0.;,0)". '_ _:

Re_ions of Asymptotic Stability

Let us define N as the neighborhood of (0, O) such that _ r(x, y)

- . bY

and xr(x, O) 0 for (x, y) in N. Next let K 1 be defined by.

x

(x, O) dx_r

<

.:_ ::_:_. _, KI-- L.U,bo _-2 _o

<. 0

and define K 2 and Ko as

x

-:>o r'x'°'
x _ N t . I

, and Ko = min(Kl, K2).

Then the regio.n .defir_ed by, _: .: _:-._.

Xy - 2 r(x, O) dx

. , , _:- . .: ,:-,_ 4._ _' ,__ _ . _ . ::''

is a region of asymptotic stability of (0, 0).

< Ko

Example _ , ._.

2
Consider _ + ax + 2bx + 3x = O, a, b > O. In this case,

r(x, y) -- - ay - 2bx - 3x 2. The set N is all points (x, y) for which

x > - 2b ; and K o = 8 b3_27 :_ Thus, a region of asymptotic
/ _ •3

stability is defined b_:

,)

2 2 3 3

y + 2bx + 2x < 8 b

.,..... 2'7

where y = x.

(16)
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Example 8, [8] Leighton's System of Two First-Order Equations

Consider the system

= f(x, y),

# = g(x, y),

where f is of class C 2 and g is of class C I in some neighborhood N of (0, O).

We also assume that f(O, O) = g(O, O) = 0 and that the Jacobian of f and g

is nonzero at (O, O). This insures that (O, O) is an isolated critical point°

Further, assume that not both _ f(O,O) and -_f(O,O) are zero;

_x _y

say, _ f(O,O) ¢ 0 o In order to determine an LCL function of (I) we
_y

must determine r(x, x), which is consistent with the above conditions placed

on f and g. First solve for y in the equation x = f(x, y); that is, y = h(x, x).

Then, the resultant r is

g[x, h(x, i)] --
r(x, x) = -_ h(x, _)

This r satisfies the hypotheses of Theorem i in Example 7. Thus, the LCL

function is given by

2 /oxV(x, x) = x - 2 r (x, O) dx.

Special Case

Consider the system

The Jacobian of f and g is

and _ f

by

we have

x -- 2x+y

=-y/l+x 2

J(f, g) = - 2 _ O at (O, 0)

= I at (O, O); that is, (O, O) is an isolated critical point. Furthermore,

(i)

(2)

(3)
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y = h(x, x) = x + 2x,

• / x2 / 2_r(x, x) = x (-2- i + ) - 2x i + x

___r = -2- ,/I + x 2 , _r(O, O) = - 3 ,

r (x,O) = - 2x /i +
X 2

Therefore, an LCL function is, by Theorem i in Example 7,

X

V = (x) 2 + 4 x i + x dx,

where

= - 2(2x - y)2 (2 + /i + x2)

Thus, the origin is asymptotically stable.

Example 9_ _8] Leighton's Third Order Example

We consider the differential equation

"f + _(x,_)_ + _(x,_) = o,

and the associated system

0

X = y

= - e_(x,y) - @(x,y) ,

where O (O, O) = O, and _ and _ are of class CI near (0, O).

Furthermore, (0, O) is assumed to be an isolated critical point of (2).

To study the stability of (O, O), Leighton considers the following Liapunov

function:

(i)

Y

2 V = 2 + 2 _o _ (x, y) dy

1y _(x, y) dy

O

X

+ 2c_ Y_5 + (x, O) dx +
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where o< is a constant to be chosen later. The time derivative of V with

respect to (21 is

= _ °i - _(x, Yl + y_ _(x, Yl

+_[y _]g(X, y)_@_ X __ _x; y)} I y}d

+

The following lemma is a well known result, given in [9], but we will repeat

it in the context of the above problem.

(41

Lerfl_fla

"If there exist a constant e_ such that V, in (3), is positive definite

in a neighborhood of (0, O, 01 while V, in (41, is negative semi-definite in

x, y, _ and such that either V _ O or

of (2), then the origin is locally stable.

asymptotically stable. Finally, if V _ oo

is satisfied, the origin is completely stable°"

O along every nontrivial solution

If V _ O, the origin is locally

2 2 2
as x + y + z

In discussing V and V in the light of the above lemma, Leighton talks

about a condition PH. His condition PH is: "Condition PH is satisfied if in

a neighborhood of the origin _(x, y1_.._, V is locally positive definite ,

-i
y J(x, y) _ O, where J is the integral in (4), and if V does not vanish

along the nontrivial solutions of the system in this neighborhood of (O, O, O)."

The results of Leighton's investigation of (21 are given in the following theorem.

Theorem i

i _2_ _2_ are continuous"If _and _ are of class C and

in a neighborhood of the origin, if _ (0, O) = O, _(0, O) > ol,

_(O, O) > O, _g(O, O) _ 0 , if _ (x, y) >/ _ (O, 0),
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if condition PH holds, and if

_(x,y)___x °i _ y _(x'y)_x --_(x' Y) I --_O_y

near (O, O, 0), then the origin is an asymptotically stable critical point of

system (2) o"

Special Cases

(i) When _ = f(y) and _ = ay + bx, we have the example given in [9_ p. 71

Equation (3) becomes

_ % rl y
V -- b x + a y + _ + 2b y_ + 2bxy + 2b yf(y) dy,

Joa a a

which is the same as given in [9]. The conditions of stability as given by

Theorem i are a _ O, b > O, _i= _ , f(y) > b .

a a

(2) Consider the differential equation

•,° 3
x + 3_ + 2x + x = O,

whose corresponding state variable form is

x = y

3
= - 3 _ -2y -x .

The characteristic roots of the linearized system, about (0, O, O), are

O, -i, -2. Thus, the local stability of (O, O, O) can no____ttbe determined in

this manner. Applying Leighton's theorem we have:

3

(x, y) = 3, @(x, y) = 2 y + x

2 2 3
2V -- _: + 6y _ + lly + 2x y +

4
3 x

2

where _ = _(O, O) = 3o
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The time derivative of V is V = - 3y2 (2 - x2). Thus, V is positive definite
2

for x < 3/2 and V is negative semi-definite; therefore, the origin is

locally asymptotically stable.

(3) If _ = a and O = by + cx, we have a linear system. Leighton's

Theoremindicates asymptotic stability of the origin if a > O, b > O,

c > 0 and ab > c hold. Whena _ O, b > O, c > 0 and ab _ c, and

taking oi= c/6 , Leighton's Theorem indicates an unstable origin. This is

consistent with linear theory.

Example i0_ _8] Lei_hton's System of Second Order Equations.

Consider the system of differential equations

" .= r i (x I, o.. , xn ; x I, ... , xn)

=r i _, _x),

where i = i, 2, ... , n, and r _, i) vanish at x = x = 0 and are of Class C 1

in some 2n-dimensional neighborhood N of the origin. Let N i demote the

neighborhood N with the origin deleted. For convenience ]et

Ri(x) = R i (xI, .......xn) = r i (_; 2)

and denote by N n the Set of points (_ ; O) in N. We suppose that the

Jacobian

Jl = _ (rl ....... rn) _ O

(Xl,...... Xn)

at the origin, and thus in the neighborhood N,, Therefore, from (2) we have

that the origin is an isolated critical point of the system

xi = Yi'

yi = ri ; ,

where i = i, 2 .... , n; and (3) is the system associated with (i).

(I)

(2)

(3)



Next, we introduce the line integral

l(x) = R i _) dx i

and we assume that

ri =

xj xi
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in N.

analysis of system (3) are summarized in the following theorem.

(i summed, I to n),

Thus, I_) is independent of path in Nn. The results of the stability

Theorem

"If the function l(x_) is positive definite and if the Jacobian

_ (rl, ,rn)

J2 = _(Xl, • o o ,Xn)

evaluated at "x = 0__is the determinant of a negative definite quadratic form,

then the function

n

2V = _- Yi Yi -- 2 I _)
i=l

is a Liapunov function for the system (3), and the origin is a stable critical

point of this system_ (In fact using LaSalle's results, [9] , the origin is

asymptotically stable. )"

Note

0

Computing V along the trajectories of system (3) results in the following

expression:

n
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Example Ii_ 8 Leighton's Exact Equations of First Order

Consider the system defined by

xi = ri(xl' x2' .... Xn) = ri(_),

I

where the ri are of class C in a neighborhood N of _ = O, and the point

is an isolated equilibrium point of (I)o

ri

Dxj

Further, we assume that in N

= ._ •
_xi

Because of (2), the following line integral is independent of path:

/o xV = ri _) dx i (i summed, i to n).

If V is computed along the path from (0, O, ... , O) to (Xl, O, ... , O)

to ... to (Xl, x2, ... , Xn) , then we can easily see that

n

= 7- ri _) ri (x) .
i=l

Thus, V is poeitive definite in N. If V is negative definite in N, the origin

is asymptotically stable. In all other cases, by Liapunov's instability

theorem, the origin is unstable.

(z)

(2)

(3)

(4)

Special Case

Consider the system

x = ax + by,

= bx + cy,

where we assume that the constants a, b, c satisfy the conditions a + c

ac - b2 < O. Thus, the V-function becomes

SxV = rl_ dx I + r2 (x)dx 2 ,

O
m

< O,
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+ cy) dy ,

1= 2 + 2bxy + cy 2 ,

where

= (ax + by) 2 + (bx + cy) 2

Therefore, O is asymptotically stable for the conditions satisfied by a, b, Co

Example 12, [10] Skidmore's Fourth Order Case

In this example we consider the stability and instability of an isolated

equilibrium point of a fourth-order autonomous system of the form

x = y

= w

= -w_(x,y,_) - _(x, y, _),

associated with the differential equation

.... _) ....x +)_(x, _, x + _(x, x,'_) = 0.

We restrict_and O in the following ways: _(0, 0, O) = O,

_ and _ are of class C2 near the origin° We also suppose that the origin

is an isolated equilibrium point of the system (I).

In the following discussion, the subscript "0" denotes the quantity being

evaluated at the origin ands< is a constant that will be assigned a particu-

lar value at a later time. In the analysis of the stability of the equilibrium

solution the Liapunov function used by Skidmore is

(I

(2
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t +
y2 2

-_x o

+

x

+ 2_'_O_o _)(x, O, O) dx + 2O<_o yw +
(3)

+ 2 (_o-Ol) _ (x, y,:}) d:_ + 2_L o _(x, y, O) dy
+

_o :_+ 2/o _5w + 2 _(x, y,_)d_ + w 2

The time derivative of V along the trajectories of (I) is given by:

L -J
o

+ _ -,_ + _ "_s(x,y,_ )
_y

+ W _/_ (X, y,_) - __o * 2yw 7;0
2 Jt

3x 0

The author uses the usual theorems relating the properties of the V-function

+ (4)

with the local stability properties of the origin.

Some of the restrictions which are placed on _ and _such that V is

locally positive definite in a neighborhood of the origin are
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-ax _y
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, _S__o>o ,Yo _o,

_a__ ° - "_o___o> o ,2y

2

_y _ _x

where c_ is taken to be

_o 1 2

- i_-;--7 >0,

a-/-5=l_x
We not_._e in passing that the system (1) has equilibrium points when

y = z = w = O, _ (x, O, O) = O. These points are also critical points of

the Liapunov function in equation (3). But the author in [i0] only is concerned

with the equilibrium point at the origin.

From equation (4) we see that -V is a quadratic form in[y, z, _with

variable coefficients which are functions of y, z, w; that is,

Ey, , w]

where the elements of A are the terms in the brackets in equation (4). The

form -V will be positive semidefinite when the principal minors MI, M2, M 3

of matrix A satisfy the inequalities:

M I > O, M 2 ) O, M 3 > 0

in a neighborhood of the origin. Therefore, the following stability results

are obtained for the system in (i) based upon the inequalities in (7).

(5)

(6)

(7)

Theorem i

H) If the following conditions hold in a neighborhood of the origin:

(i) _ (x, y, z) and _ (x, y, z) are of class C2;

(ii) _ (O, O, O) = O;
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(iii) conditions in (5) and (7) hold;

(iv) V _ O along every nontrivial solution of (i),

C) _hen the origin of (i) is an asymptotically stable equilibrium point.

Skidmore studied the instability of the origin by employing the following

theorem of Krasovskii, [ii, p. 69_ . _

Theorem 2 " :: "

H) If there exists a bounded neighborhood N of the orig_n, a region N I con-

tained in N, and a scalar function V_) such that .. %
z

(i) V_ is.,of cLass,C _in N_

(ii) 0_. belongs to the boundary of NI; the boundaries of N and N 1 have

points in common;

(iii) V_ _ 0 for x in N!; V_ = 0 for x's belonging to the boundary

of NI but not to the boundary of N;

(iv) V(x) >/ O for x belonging to NI;

(v) the set R, which contains all the x's in N_ for which V_ = O,

does not contain any positive invariant set of the syste_n

= _f0@)--0_;

C) _hen the equilibrium point at _0 is unstable. _ is an n-vector in this theorem.)

Skidmore applied Theorems I and 2 to several special cases. These special

cases will now be presented as Examples 13, 14, 15, 16 and 17

Example 13, [i0] Fourth-Order Linear System

Consider the linear system defined by

"x" + al'x" + a2"x + a 3 _ + a4 x = O,

where the associated system is

x = y

_. = w

= - alw - a2z - a3Y - a4x.
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The conditions given in (5) in Example 12 are equivalent to the Routh-Hurwitz

conditions :

A I = a I > O

A 2 = a I a2 - a3

, A 3 = aI a2 a3 -

> 0

2 2

a 3 - a I a4 >

If o< -- a4/a 3

A 4 = aI a4 A 3 > O.

, then V and V as defined in Example 12 verify that

the ori$in is completely stable.

For ai. > 0 .r _ (3 = I, 2, 3, 4) and A 2 < O, we have that A3

Let N I in Theorem 2, in Example 12, be the points (x, O, O, w). The V given
2

above is -_A3/a3_ , but the corresponding surface z = 0 contains no

invariant points of the linear system. Thus, from Krasovskii's Theorem, the

<

origin is unstable.

Therefore, for the linear case, Skidmore's results are consistent with

O,

other methods of stability analysis.

O,

Example 14_ [i03 Fourth Order Analogue of an Example by Szego

The conditions in (5), in Example 12, are sufficient for V to be positive

definite locally but are not necessary as can be seen in the following example:

....... 4x 3x + 6x + x + 6_ + = O.

The state variable notation for this system is given as

= y

= w

= -6w -II_ - 6y - 4X3o
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The linear approximation of this system about the origin yields the character-

istic roots O, -I, -2, -3. Therefore, the asymptotic stability of the origin

can not be predicted by the linear approximation and thus Liapunov's second

method is required. In this particular example, the expression for _ __._.__o

is zero and not greater than zero as required by Skldmore's conditions. But

if _= 4/3 , the V-functlon in Example 12 becomes

2V = 16x4 + 124y2 + 39_2 + w2 + 48x3 y + 8x3_ +

+ 108y_ + 16yw + 12_w=

2 3 2 3
= (w + _L_ + 8_) + I (3 _ + 4x + 6y) + 16 (3y + x

3 3

+ 16 x4 (3-2x 2);

3

2
so that V is positive definite when x

V is given by

< 3/2, The time derivative of

-V = 3 (x2 y- 2_)2 _ 3 y2 (#_ 24x 2 _ 16),

where -V is positive semidefinite when x 2 < /-_6 - 12
o

Hence, the origin is locally asymptotically stable, even though not all of

the conditions in (5) in Example I_ are satisfied°

Skidmore investigated the region of asymptotic stability for this system

by using a theorem due to Leighton [14 .

Theorem

'_uppose the system _ = _(_) has an isolated equilibrium point at the

origin, and suppose further that there exists a function V(_) of class C2

2

) +
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in E_ which is locally positive definite around _ = O, with V(O), with V_) = O.

Suppose further that V has at most a finite number of critical points, and that

0

V _ O in En, and that the origin is the only point in the invariant set

for which V = 0. It follows that O is an asymptotically stable equilibrium

point of _ = _(_) and regions of asymptotic stability of O are bounded by

surfaces defined by V_)= a, for each a on an interval 0 < a < K .

The number K is a positive critical point if V, if V has at least two critical

points; otherwise K = Lim infl v (_)I

x -------_oo

In the example considered here the critical points of V are Po(O, O, O, O),

PI( i, - 1/3 , - 2/3, 20/3 ) , P2 ( -i, 1/3, 2/3, -20/3 ) , and the corresponding

critical values are 2V = 0 , 16/3, 16/3. Thus, the domain of asymptotic stability

of the origin is bounded by the surface V = 8/3, where V is defined in the above

discussion. But in this particular case V _ 0 further restricts the region,

as mentioned previously.

In a similar analysis and by using Krasovskii's Theorem, Skidmore proves that

the origin of the following system is unstable:

.... 4x 3x + 6_" + ii_ + 6_ - = o.

Example 15, [I0] Skidmore's Theory Applied to Cartwright's Example

In reference [i_, Cartwright studied the asymptotic stability of the

origin f0r, the system

= - a I w - a2 _ - a3 y

associated with the differential equation

x + al'_ + a2"_

where al, a2, a 3

+ a3 x +

are constants and f(O) = O.

- f(x),

f(x) = O

This equation is a

(i)
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special case of Skidmore's equation, Example 12, where _ = aI and

= a2 _ + a 3 y + f(x),

Cartwright derived the Liapunov function given by

2Vg = al _- a3iW + ale + (a2 _ a3 ) y 2

a I

+

_" 2
2 _ + i

+ a3 aI_ alY + __aI f(x)

a3 -_

jx I 2 2+ 2a I f (x))ala2a 3 - a3 - a I

o

l 2i 2 2 '
+ a3_ala2a 3 -a 3 -aI f (x)_y

_)

where

• 1 2 2 ' f" i 2
-V c = ala 3 ala2a 3 - a3 - aI f (x) + i alY (x) y

.,/

The conclusions drawn by Cartwright from V c and V c concerning the stability

of __Oare as follows, For every Vo > O, there is a domain Do of asymptotic

stability of O given by V c (x, y, z, w) <

conditions hold in Do:

(a) f' (x) > O, a I

Vo , provided the following

> O, a 2 > O, a3 > O;

(b) aI a 2 - a 3 > O;

2(c) al a2 a3 - a3 a4 f' (x) >j O > O;
J.

(d) f" (x) continuous;

(e) I f" (x) I y < _/al ;

(f) ii X f (x) dx _ oo as Ixl------_ oo ,

Skidmore observed that if f" (x) _ O, then "f" continuous" fails,

in general, to hold throughout E4; so that complete asymptotic stability

of O can no____tbe determined from V c in equation (2). But if Skidmore's

+ (2)
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V is used, one can conclude that O is completely stable under appropriate

conditions.

First, Skidmore considers local asymptotic stability. The V given in

Example 12 and the value of_ are given by

oi = f' (O)/a3,

2V = 2 -i _Jox

a3

f(x) _ f' (O) - f' (x) Idx +

+ a 3 ala2a3 - a3 " al f' (O) y

ala3 la2a3 - a3 - a I f' (O)+

+

+

(3)

where

I+ _w + a I_ + a3 f' (0) y + ala 3

- V = a I '(O) - f' (x) y

+ a3 +

+_f' (0)- f' (x)}ye +

+ a3 ala2a 3 - a3 - aI f'(O) _

The conditions (5) and (7) in Example 12 become

(a)' f'(O) > O, aI > O, a 2 > O, a3 > O;

(b)' ala 2 - a3 > O;

(c)' A 3 = ala2a 3 - a32 - a 2 f' (0) > O;

(d)' f' (O) > f' (x) > f'(O) -- 4al A3;

a3

Thus V and -V are locally positive definite and positive semidefinite,

respectively. Also, since the surfaces x = z = O, y = z = O do no____ttcontain



--37

invariant points of the system, the origin is locally asymptotically stable.

(It can be shown that locally the conditions (a)' (d)' are more general

than Cartwright's conditions.)

The origin of the system in (I) can be shown.to be completely asymptot-

ically stable if conditions (a)' (d)' hold and if, in addition,

hold.

(e)' the only critical point of V is O;

/ X_ +

(f) t!_i; 1 --_inf ooV(_)I_ = + oo, where II-x;i = ,• '

These conditions (e)' and (f)' have been weakened in 112!,

, +x 2
n

Example 16, [iO] Special Case of Example 15

In this particular example, Skidmore's V-function yields complete asymptotic

stability of the origin, whereas Cartwright's V-function does not. The

equation we consider is

x + "_" + 3_ + x + arctan x = O,

and the corresponding systemis

x _ y, y = z, z = w,

w = - w -3z - y - arctan x.

u=_=,-.--_aI = !, a2 = 3, a3 _ !, and #rx__ _ arctan x, wher_.....

- 7r/2 < arctan x < _/2 Therefore conditions (a)' (d)'

in Example 15 are satisfied for all x. The V and V functions of Skidmore are

x

2v 2/ii.ilarctaoxd  y2+ 2do +'-':77 ;1

÷ (y + _ + w) 2 + (arctan x + y + _)2 ,

and
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-V = 1 - y +* -
I

= + l+x- +

i ly_ + _2 =1+_f

The V given above has its only critical point at the origin and because

r xllii + x2

arctan x dx -->oo as Ix I --------_oo

conditions (e)' and (f)' are satisfied° Thus, the origin is completely as

asymptotically stable. Cartwright's conditions will no___ttyield complete

asymptotic stability of the origin.

Example 17_ [I0] Skidmore's Results Applied to Ezeilo's Example

In reference [_, Ezeilo considered the equation

o-.* t**

x + a I x + a2 x + g(x) + a4 x = O,

with the corresponding system defined by

• .x = y, y = z, = w,

w = - alw - a2z - g(y) - a4x.

This is a special case ol Skidmore's fourth order differential equation

where,= a I and O = a2x + g(y) + a4 xo

Ezeilo showed that the origin is completely asymptotically stable if

the following conditions are satisfied:

(a) a I P O, a2 > O, a4 > O;

(b) g(O) = O, g(y)/y >f

(c) g'(y) continuDus and g'(y)

a I a2 a3 A 3 a 3 -

a3 > O (y _ O);

_--- A 3 for all y, where

2

a I a4 _ O, and

A 3 = aI a2 a 3 - a32 - al 2 f' (O) > O;
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constant such that

is any

2a 4 (ala2a 3 - a32 - al 2 a4)
gl <

2
al a3

The conditions which must be satisfied in Skidmore's Theorem are

(a)' a I, a2, a4, g' (0) > O;

(b)' a I a2 - g'(O) > O;

(c)' ala2g' (0) - al 2 a4 I g' (0)} 2- > o;

i

(d) g (y)/y - g' (0) > O;

(e) p a] a2 g'(O) - al 2 a4 - g'(O) g' (y) >

For o( = a4/g, (0) , the Liapunov function

O.

¢ 2] r- ] 2 _Y

ZV = lala4 Ix2 +lala2a4 - a4i y + 2aI j
[g-7_> _ t g' (0)

O

_,_jj dy +

_a 2 _ 2 2
+ i + a2 " ala 4 __ + w + 2a!a 4

g' (0)

xy + 2a4x +

+I2al2a41Y_: + 2 g(y)_:+[2ala42 yw + 2a,_.w,

(

where

-V = ala4 I g(Y)g' (O) I y2g'(0) y +

+ I ala 2 g'(O) - aI a4 - g'(O) g' (y)
g' (0)

Under conditions (a)' __ (c)' , V is positive definite and conditions (d)' , (e) '

imply that -V is positive semidefinite in the neighborhood of the origin.
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Further, the surface y = z = O, where V = O, contains no invariant points

of the system. The conclusion is that the origin is locally asymptotically

stable. If we assumethat Ezeilo's conditions (a) __ (d) hold and take

= aA in the above V-function of Skidmore, then this V = aI (VE) '

a3

VE being Ezeilo's V-function. Therefore, the origin can be shown to be

completely asymptotically stable.

The next set of examples are from a summary of third and fourth order equations

collected by G. Sansone in reference [i_. Some of the references given by

Sansone were unavailable (as far as we are concerned), so that some of the dis-

cussion which follows will be brief.

Example 18, _5] Simanov's Example

The system is defined by the following third order equation:

x" + f (x, x)x + b_ + cx = O,

where b and c are constants. The result of Simanov's work is_

the origin of this system is globally asymptotically stable if

(I) (O, O) is an isolated equilibrium solution of the system;

(2) b _ O, c > O;

(3) f(x, _) > c/b, for all x, x ;

(4) 0) < 0, for all x, x.

Example 19_ [16] Krasovskii's Example

In reference _6], Krasovskii gives necessary and sufficient conditions for the

asymptotic stability of the origin of the following system:

Xl = fl(Xl ) + alx2 + blX3,

x2 = f2(x2 ) + a2x2 + b2x3,

x3 = f3(x3 ) + a3x_ + b3x3'
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I xl , assuming alb I # O.

Example 20, _7, 18, 19] Tusov's Example

Tusov consider the third order system defined by

3

Xl = _- alK XK + f (Xl)
K=I

x2 = _- a2K XK ,
K=I

3

"x3 = _-- a3K xK
K=I

where aik are real and f satisfies the usual existence and unicity conditions in

the whole space. Tusov derives the sufficient conditions for the origin to be

asymptotically stable. Furthermore these conditions of stability dictate that f

must satisfy the inequalities

< <

where _< and @ are the extreme values of the parameter "a", such that on

_=_=_Ing ft..._x^ljby ax I in the above system, _h_.................rh=_rt,_iq_ic roots of the

corresponding linear system have negative real parts.

Example 21,[1, 20, 21_ 22] Pliss's Examples

In reference[20], Pliss considers the system defined by

x = y - f(x) ,

= _ - x ,

where f(O) = O, xf(x) > x2 for x # O. Pliss derives sufficient conditions for the

stability of the origin "in the large." He also derives sufficient conditions for _

the existence of periodic solutions°
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In reference [I] he considers the system

= y -

= _ -

f(x_ ,

X ,

= - ax - bf(x),

where f is Lipschitzian, f(O) = O, f(x)/x > x + bf(x)/x for x > O. Pliss gives

sufficient conditions under which this system is stable in the large.

Furthermore, he proves that periodic solutions exist if

(I) a > O, 0 _ b < I, a + b >i I;

where h _ l-__b ;
a

(4) _ , Xl, x2 - x I are sufficiently small positive numbers.

In reference [21], Pllss gives necessary and sufficient conditions for stability

in the large of the system

The conditions are

= y - ax - f(x) ,

= x - bf(x) ,

= - c f(x).

(i) ab > c, b > O, c > O, f(O) = O;

(2) xf(x) > 0 for x # O;

t(3) Lim f(x) -

x ----_-oo f(S)ds = oo

o

fx 1- f(s) ds =

o
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Finally in reference _2], Pliss gives, without proof, many conditions under which

all the solutions of a nonlinear system of the form

= A x + f(xl)b, _(0) = c ,

approach zero as t _ ooo Here, _ is a 3-dimensional vector, A is a constant

matrix, and f(xl) is a scalar function.

Example 22, _3] Vaisbord- Boundedness of Solution

In reference _ , Vaisbord considers the system

= fll(X) + fl2(Y) ,

= f23(_) ,

= f3!(x) + f32(Y) + f33 (_)

The existence and continuity of the fij's are assumed and the following hypotheses

are satisfied:

(!) fij(O) = 0 ;

/

(2) fil(X) < O, _im fil(X) =- oo (i = i, 3) ;
Ixl_oo

(3) flm(Y ) < c, f'23 (_) > O, If23(_)I < a I _ I ;

and when L im if32 (Y) I _ _, Lim if32 (Y) i
y _ oo y--_ -_

then lim f'32 (Y) = O, lim f'32
Y ---_ y ---_-oo

(4) on the solution curves of

(y) = O, respectively;

f31 (x) + f32 (y) = O ,

we have

/
, /,0 < A < fll (Y)

/ f31

(5) ca/AN 2 /-. i ;

(x)

> N > O,
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11 33 11 33L -)

Under these hypotheses the above system has a periodic solution; and all solutions

of the system are bounded in the large as t --_ oo.

An outline of the procedure followed by Valsbord in his analysis is as follows:

(I) linearize the system about the origin, the linearized system being

= fll f12 7

= f23

(2) the characteristic roots of this linear system are such that one root has a

negative real part and two roots have positive real parts;

(3) by a fixed - point theorem the existence of a periodic solution is proved;

(4) from topological considerations the boundedness of the solutions is proved°

Example 23, [24] Ogurcov's Examples

Ogurcov studies the asymptotic stability in the large of the equilibrium solutions

corresponding to four different autonomous systems. Liapunov's second method was

used in the study, and what follows is a summary of the stability results.

(A) "_ + _(x, _) W + _(_) + f(x) = o

The stability results, which are sufficient conditions, are as follows:

ix /o,(i) if F(x, y) = 2 0< f(S) ds + f(x) y + (s) ds,

where olis a positive constant and y = x, then F

(2) > 0,/(o) = f (0) = O, f(x)/x

2 2
_ _)as x + y

(x, y) >12_,-;

,_oo ;
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(3) x "_3_(x, y) _ o ;
_x

(4) 2 oi_ (y)/y - f' (x) > O;

3(5) 2 oi_(y)/y - f' (x) - _. (x, y) - 2 =q

(B) "x' + a_ + _(x) x + bx = O

> O.

The sufficient conditions for stability are:

a > O, b > O, _ (x) > b/a ;(1)

I_(_) - b/a I d%-} )¢_ as x

(C) "x" + "_(_, _) "x" + cx" + bx + ax = 0

xljo(2) ds

The values a, b, c are constants. The sufficient conditions for stability are_

(I) a > O, b > O, _(y,_) > O, where y = x, _ = "x;

(2) bc _(y,_) - b2 - a2 _(y,_) > 0 ;

7_'_(y,_) -_ o.
(3) _ _ y

.......(D) x + dx + c_ + + ax = O

me stability conditions are:

(i) a, c, d are constants and a > O, d > O;

(2) _ (O) = O, _(y)/y > 0 ;

(3) cd _(y)ly - _fi(y)/y_2
- ad 2 _ 0 .

Example 24, [25] Tabueva's Example

In reference [2_], Tabueva derived conditions for the stability and existence of

a periodic solution for the system defined by

oso

x + ax" + bx + sinx = e(_),

where a and b are constants. The stability in this case is asymptotic stability.
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Example 25, 66, 27, 28, 29, 30, 3_ Ezeilo's Examples

In the five papers, _6] to L30], Ezeilo studies the following third order

nonautonomous system:

x" + ax + b_ + h(x) = p(t) ,

where a, b are positive constants. The findings of Ezeilo are_

(1)

(2)

(3)

where xo

sufficient conditions for boundedness of solutions;

when p(t) is a continuous periodic function of t with a least period T > O,

then sufficient conditions for the existence of periodic solutions with periods(nTl;

n _ i and n an integer, are given;

sufficient conditions for the existence of at least one solution of the system

with period T.

_ , Ezeilo gives an existence theorem for a solution ofIn reference

"x + f(x, _) x + g(_) + h(x) = p(t) ,

= x(O), Yo = _(0), _o = _(0), for t >/ O.

Example 26 [32J Pliss's Example

In reference [3_, Pliss gives a generalization of the results of Ezeilo for

the system defined by

tP°

x +

.66

y +

_" +

ax + bx + h(x) = P(x,_,_,t).

a_ + _(y) + y = G(y,y,_,t),

g(_) + _ + a _ = Q(_,_,_,t) .

In the case where P, G, Q are periodic with respect to t, Brouwer's fixed point

theorem is used to prove the existence of a periodic solution°

Example 27, [33, 34, 35, 363 Ska_kov's Work

The system which Ska_kov studied is defined by:

= ax + b y + f(x, y,_) ,

= cx + dy + g(x, y,_) ,

= h (x, y,_) ,
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where a, b, c, d are constants such that ad - bc _ O, and where f, g, h are power

series with real coefficients beginning with terms of at least degree two.

investigations conducted by Ska_kov were as follows:

(i)

(2)

(3)

The

the behavior of the integral curves,

stability in the large of equilibrium solutions,

existence and character of the system's singular points; that is, the behavior

of the characteristic curves in the neighborhood of the singular points.

This completes the summary given by Go Sansone in reference _) concernin_

stability theory.

Example 28_ [37_ 38_ 39_ 40_ 41] Duffin's Work

[37] ""in _ ....... 4: _^_1. _.-r_renC_ , Duffin determines I- = certain system ..........WIL_IL _L _

differential equations has a unique asymptotic solution. That is, to determine

under what conditions will all the solutions of the system approach each other

system under investigation is in the field of electrical vibrations in networks°

Definition i

A linear network is a collection of linear inductors, linear resistors, and

linear capacitors arbitrarily interconnected°

Definition 2

A quasi-linear resistor is a conductor whose differential resistance lies between

positive limits.

The main theorem in reference [37] can be paraphrased in the following way:

"If in a linear network)the linear resistors are replaced by quasi-linear

resistors, then, as in the linear case, after sufficient time has elapsed

,I

there is a unique relation between the impressed force and the response.
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The system being considered is an n - degree of freedom system.

is linear, the network equation is

where

Whenthe system

L_ "_ + _R _ + S _ = e__, (1)

L, R, S _ constant, symmetric, positive

_=__ -

semi-definite matrices,

n-th order current vector,

n-th order electric charge vector,

n-th order electromotive force vector.

Definition 3

A continuous vector function _(_) is a quasi-linear replacement of R X provided

! C_l) - ! (_2) = E*'(Zl - _2 ) '

where V* is the symmetric Jacobian matrix which satisfies

for some positive constant a independent of the vectors _I, _2 ' _ "

(2)

(3)

Main Theorem [3_

H) If (i) all solutions of (I) satisfy, _ _ O as t e, oo,

(ii) V is a quasi-linear replacement of _R y,

(iii) for t >I. O, the vectors _[ and __ satisfy

L_ .E + V_(_) + S _. = e-.,

(iv) q* is any other solution of (41,

(v) _ and _* are continuous,

C) then

fo E'11 <

(4)

(s)
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Proof

Let w = E " _*. Then, from (2) and (4) we obtain the following equation

for W:

O

Premultiple (6) b$ W r and use the symmetry properties of L and S to obtain

d IWTL W + W_TS W_? =-2 W_'T_V* W.

Integrating (7) gives

Since L and S are positive semi-definite,

O

d_ < A/2 .

Then _o-, L.= pZUp=LL_== uf sy_etric semi-positive matrices and the inequality

(8), we can prove that (5) is satisfied.

(6)

(7)

(s)

Notes About the Theorem

(i) This theorem says that H and E* approach each other in-the-mean, but

(2)

not necessarily pointwise.

Since L and S_ are positive semi-definite and considering the equations (3) and

(7), we see that _W_T L W_" + WTS W_lis playing "very nearly" the role o f

a Liapunov function.

In reference _8], Duffin shows that a network of quasi-linear conductors

possesses a stable set of currents and proves that the stable set is unique° The

criteria which this set must satisfy are the conservation of electricity and the

single-valuedness of the electrical potential. In the proof of the statements,

Duffin uses an analogy between elastic and electric networks.
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In reference [3_ , Duffln considers the quasi-llnear properties of a certain

n-dlmenslonal transformation, _ = S _. More precisely, he considers the

sufficient conditions to guarantee the existence of a unique inverse. (This trans-

formation is, of course, directly connected with his theory of electrical networks°)

In reference[40], Duffin proves that a certain nonlinear system has one and

only one periodic solution. The nonlinear network is obtained from a linear network

by replacing linear resistors by quasi-linear resistors. The central mathematical

ide_____aexplored in reference [40]is the treatment of the network equations as a trans-

formation between Hilbert spaces. That is, the network equations define a transfor-

mation from the '_ilbert space of electric charge" to the "Hilbert space of

electromotive force". Duffin specifies the sufficient conditions which must be

imposed on this nonlinear transformation in order that the inverse transformation

exists.

The theorem and proof concerning the existence of a unique periodic solution

for this nonlinear system in [4OJdepends on the above mathematical concepts and

is very similar to the work of reference [3_ , which has already been discussed.

Combining the results of [37_ and [40] we see that the network in equation C4)

can be specified such that all solutions must approach the unique periodic solution.

In reference [4_ , Duffin considers networks consisting of transformers

and resistors, arbitrarily interconnected to a set of generators. The network

equations are first integrated with respect to time. The integrated equations then

are similar in form to the equations analyzed in [373 and [40]. In these equations

the permeability of the core plays the same role as the resistance in the previous

equations. Thus, Duffln again uses Liapunov - like arguments to analyze these

new equations.
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Example 29_ [423 Jone's 2nd Order Equatio n

Jones considers a class of nonlinear second order differential equations which

has occurred in astrophysics, atomic physics and mechanics. Jones presents a set

of sufficient conditions which guarantees that no solution of the system has an

arbitrarily large positive zero. In the proof of his main theorem, Jones uses an

"amplitude variable" which is really a Liapunov function.(For this reason this

example is included in the report°)

The system is defined by the following equation:

n 2i-i

y" + _ fi(x) y = O.
i=l

All of the coefficients of (i) are assumed to be real-valued, bounded, and

Lebesgue - measurable functions of x, x _ Oo It can be proved that a solution

of (i) will be an absolutely continuous, real-valued function with an absolutely

continuous derivative satisfying the differential equation almost everywhere in

the sense of Caratheodory.

Theorems [42_

H) If (i) fn(X) has a positive lower bound for x >i O,

c)

(ii) fi (x) >,- O, f'i (x) O for i = i, o.o, n,

(iii) f'i (x) are Lebesgue - measurable,

(iv) n is a positive integer greater than I,

oo

f 2iiI(V) fi (x) x dx < OO ,
o i=l

_hen there is no solution, y(x), of (1) with arbitrarily large positive zeros.

(i)
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Outline of the Proof

Jones defines an "amplitude variable" in the following way:

1 n

= y2iR(x) _ (y,)2 + 5-- fi (x) ,
i=l

where,(x) is a solution of (I). This amplitude variable is really a Liapunov

function; R(x) is positive for x > O and

n 2i

R'(x) = _-- fi'(x) y _ O .
i=l

From (2) and (3) we conclude that for any solution of (i), y'(x) remains

bounded as x _ oo. The author then constructs a contradiction proof to

verify that the conclusion is valid. (The main vehicle in this proof was a

Liapunov function, R(x))o

(2)

(3)

Example 30, _ .Utz's 2nd Order Equation

In reference _ , Utz considers various sets of sufficient conditions which

guarantee boundedness or asymptotic stability of solutions of 2nd order systems°

In theorem 5, Utz proves his results through the use of a Liapunov function. We will

now outline Utz's contribution as reported in _ .

The systems which are investigated have coefficients which are differentiable,

and _re such that x(t) _ O is a solution of each system.

Definition i

A solution, x(t), of the system is called oscillatory if it has positive maxima

and negative minima for arbitrarily large t.

In the first two theorems, the system being discussed is defined by:

+ f(x,x) + g(x)= O. (i)
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If (i) f(x, x)

(ii) x g(x)

(iii) g(x)

>I" O for x, x ,

> O for all x _ O ,

dx ,_ _ as x _ oo ,

(iv) x is a nonzero solution of (i), valid for all t > 0 ,

_hen x is bounded and oscillatory as t _ _, or x monotonically approaches

0 as t ---_ oo.

Theorem 2

(H) If (i)

(ii)

(c)

where

f(x, _) > O, except at a discrete number of points,

g(x) is an odd function,

(iii) x is an oscillatory solution of (i),

%hen the amplitudes of the oscillations of x are monotonically decreasing.

In the next three theorems, the following equation is considered:

!

+ f(x) x + g(x) = O ,

f'(x) = df/dx.

Theorem 3

(H) If

(c)

(i) x g(x) > O for all x _ 0,

(ii) g(x)/x _ oo as x _ _ ,

(iii) there exist constants b, B > 0 such that for all real x,

If(x) - b g(x)l_BIxl,

(iv) x is a nonzero solution of (2) for t > O ,

_hen x is bounded and oscillatory, or x monotonically approaches zero as

t --_ oo.

(2)
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(c)

If (i) there exists positive constants a and b such that b

b + 4aZ >/ a F (x) >/ G(x) >.i b

where F(x) = f(x)/x and G(x) = g(x)/x,

2
> a and

,

(ii) x is any nonzero solution of (2) valid for all large t,

then x is bounded and oscillatory, or x monotonically approaches zero _s

t _ OO_

Theorem 5

(H) If (i) xf(x)

(ii) g(x)/x

(c)

> O, xg(x} > 0 for all x _ O,

O0 as X _ OO,

(iii) x is any nonzero solution of (2) valid for all large t ,

then x is oscillatory, or x monotonically tends to zero as t _ OOo

Notes about the Theorems

(i) The above theorems are independent of each other as we can show by example°

I x I" Then Theorem i isIn equation (I) let f(x, _) = i and g(x) = x 2 + i

valid, but Theorems 3 and 4 do not apply. In equation (2), if f(x) = g(x) =

=9 x (exp L-x2j + x 2) and b = B = I, then Theorem 3 applies but not

Theorems i and 4. In equation (2), if f(x) = 3x (exp _-x 2] + I) ,

g(x) = 3x, and b = 3 and a = 3/2, then Theorem 4 applies but not Theorems I and 3.

In equation (2), if g(x) = x and f(x) = 3x (exp -x + 1), then Theorem 5

applies, but not Theorems i, 3, and 4.

(2) In the proofs of Theorems i through 4, non-Liapunov methods were employed;

but in the proof of Theorem 5, a Liapunov function was used.
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The system in equation (2) was rewritten in the following form:

x = y - f(x_

= - g(x) .

2
dt + y

The choice for a Liapunov function was

t

V(t) = 2 _o g(x) x

By the hypotheses of Theorem5, V(t)i is positive definite.

of V(t) with respect to (3) is

V(t) =- 2g(x) f(x)

Also, from Theorem 5, V _ oo as t ------_.

Theorem5 follows from Liapunov theory.

The time derivative

0

Therefore, the conclusion of

Example 31,r44 _ 45, 46, 47] Volterra's Equation

In references _ to _7] , the integro-differential equation of Volterra is

considered. This equation occurs in the study of reactor dynamics, nonlinear

oscillators with hereditary terms, and in many other physical applications. The

scalar form of the equation is given by

pt
I

= " Jo a(t -_) g (x(_)) _ ( _>

In reference [447, a theorem dealing with the asymptotic stability of the null

solution of (I) is presented. In reference [47], the existence and uniqueness

of the solutions of (I) are considered. In reference [45], the solutions of (I)

are investigated as t _ ¢_ for the case where a(t) is completely monotonic

over the interval [0, _) and where g(x) is thought of as a "nonlinear spring"

term. The results in this reference, [45], are weaker than the results in [44J;

but the theorem proved in [45_ brings '_nder one roof" several different notions

(3)

(i)
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of positivity_ such as, Liapunov functions, completely monotonic functions, and

positive type kernel functions.

In reference [46] , Kemp investigates the same nonlinear integro-differential

equation as given in (i), but for the n-dimensional case. The hypotheses in

Theorems i and 2, which are presented belo____.._w,are directly generalized to higher

order and the corresponding Liapunov functions, V(t) and E(t) as given below,

are also directly generalized. The generalization of the results for (I) involves

some labor, but no new concepts.

We will now present the two theorems, with notes about their proofs, which

occur in [44] and _45J.

Theorem i, [4_

(H) If (i) a(t) is continuous over [0, 00) ,

(ii) ( l)K (K) a(K)- a (_) >i- 0 over (0, 00), where K = I, 2, 3 and

(c)

is the K-th derivative,

(iii) g(x) is continuous in ( -oo, oo),

(iv) xg(x) > O, x _ O,

x
P

(V) G(x) = Jo g(N) dN _oo as Ixl _ oo ,

(vi) a(t) _ ao (thus, no periodic solutions exist),

(v_ U(_ ) is any solution of (i) over [0,OO),

then,

(J)
lim U (t) = O, j = O, i, 2.

t ----_ oo
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Outline of the Proof

First, the author in [44 , states and proves several lemmas dealing with the

boundedness of a, t _, and t2"_. Next, the following energy or Liapunov function

is specified:

ECt) =

G(u(t)) + _2 E

%

/ 12g(u(_)) dqr

o

+

- 2

f Lf A_t (t -q r) g(u(s)) ds

o

d't" >/ O.

By integration by parts, the time derivative of E(%) relative to (I) yields

F Pt q 2 £t [- ft

_" 0 °

From """ "'"t_) and .... _---'- _1._,._ L_.) , Wf_. tk$.OJ.J._._.Ll.l.t, Ai;_ LLLI_.I,,..

G(u(t)) _ E(t)_ E(O) = G (L4o) ,

where _o = _(O). By hypothesis, it follows that

lu(t) I K (Uo)< _ for [0, t20).

Finally, it can be shown that as%_ o -------_0, K(_ o) _O; and also, it can be

shown that u and u _ O as t --_- ¢_. (The crux of this proof was the

use of a Liapunov function as described in (3) and (4).)

(3)

(4)

(5)

Theorem 2, [45_

(a) If (i) a(t) is continuous in [O, (_))

K (K)
(ii) (-i) a (t) >/ O for K = 0, i, 2, _.. and in (O,00),

(iii) g(x) is continuous in ( - _I)_ _),

(iv) xg(x) > O (x # O),



(C) then

(v)

(v±)

(vii)

G(x) g(N) dN

a(t) _ ao,

u(t) is any solution of (i) in [0, _),

(J)
lim _. (t) = O, (j = O, i, 2)

t -----_oO
(6)

Notes about the Theorems

(I) In Theorem i, only K = O, I, 2, 3 in (ii) was required of a(t), not the

complete monotonicity as required here°

(2) The Liapunov function used in the proof of this theorem is given by

V(t) = G(u(t))

t t

a('U+ s) g(u(t-_)) g (u(t - s)) d_ds

]_here V >I 0 if the second term is nonnegative. The physical interpretation

of V(t) is that the first term is the potential energy of the system and the

second term is the kinetic energy. The kinetic energy term will be nonnegative

if a (_C+

0 <'r, s

yields

s) is a kernel of the positive type [48, p 270] on the square

< t, for each t in (0, 00). Differentiating (7) with reference to (i),

t t

_JO JO a (T+ s) g (u(t -_)) g (u(t - s)) d_ ds.

If - a (_C + s) is a kernel of the positive type on 0 < "C , s < t for each

t in (0, 00), then V will be nonpositive.

(3)

(7)

In [48, p 1603, it is proved that a(t) satisfies the required conditions

in Item (2) if the following is satisfied:

o

(8)

(9)
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"where =K(oo) < oo and _<is nondecreasing on 0 < _ < oo.

(4) E(t) -= V(t) if a(t) -= ao for all t.

Outline of the Proof of Theorem 2

We assume that V(t) and a(t) are defined as in (7) and (9).

by

where (O __ 9 , t <

We then define 2_(_ ,t)

t

=/oex I
oO). Thus, we can write V and V in terms of _:

v(t)--G (u(t))÷ 1/o_ 2_'_ (_, t) dol (_) >10,

for O & t _ oo, and

0
0

F 2 (_, t)d_ (_) __ O,

forO ! t < oo. Equations (Ii) and (12) reduce to the inequality:

G(u(t)) .._ V(t) _ V(O) = G (Uo),

for (o _< t < oo). From the hypotheses and (13), we have I U (t) I -_ K < oo,

where K _ O as U o _ O. Similar results are obtained for U and 4". Thus,

the conclusions of the theorem are valid.

(10)

(11)

(12)

(13)

Example 32, [49] Exponential Stability

In this "example" we will outline the paper of Bhatia, giving the important

definitions, theorems and examples.

The following linear, n-th order differential system is to be examined_

= A (t) x o (i)
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Also, the nonlinear system given below is analyzed:

= A (t) x + f (t _), f (t O) = 0,

for t _ 0o The elements of A, aij(t), are defined and continuous on [0, 00).

Definition i

'_he solution _ = O of (i) is said to be exponentially stable, if there exist

positive constants =land a such that for any solution _(t) of (i), _(to) = xo,

the inequality

IIx(t)_ _ _( /]X_o H exp _- a (t - to) _ ,

holds for t _ to."

Let B(t) be a symmetric matrix defined and continuous on [0, 00_o

Definition 2

"The quadratic form _T B(t) _ is positive definite if there exists a positive

constant b such that

XT B(t ) x >I b XTX , t >,, 0."

Definition 3

'_rhe quadratic form XTB(t ) x has property P if it is positive definite and if

it is positive definite and if the elements, bij(t), of B(t) are uniformly bounded

on _0, _)."

Bhatia has proved that the necessary and sufficient conditions for B(t) to have

property P is that there exists constants b I and b2 such that

bI XTX _ XTB(t ) x _ bE XTX, t _ O.

If V = _xT B(t) x, where the elements of B have continuous derivatives on[0, 00_, then

the time derivative of V with respect to equation (i) is given by

• [ tV I = x T _B + AT B + _B _A _x .
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Theorem 1, _50_ (Malkin)

(H) if (i)

(ii)

(iii)

x = 0_.,of (I), is exponentially stable,

the elements of A in (i) are uniformly bounded on I0, 00) ,

X (t) is the fundamental matrix solution of (i),

(iv) aT_(tl a possesses property P,

(C) then for each _C there exists a B such that x T _B(t) x possesses property P and

-' xj { -' tV = _T B(t)x = (_-) X (t) c (_-) X(_') X (t) x d'_,

T

where Vl -- - x TC(t) x .

Roseau improved Malkin's result in the following theorem.

(7)

Theorem 2, [51, 52] (Roseau)

(H) If (i) x = 0_. of (i) is exponentially stable,

(i i ) matrix A (t) satisfies the condition

s

(t) _-bO as (s -t ) --_ 0_R(S,t)= A(_) _r -
T

uniformly on s _ t >_ o,

(iii) XTC(t ) x has property P,

(C) then there exists a quadratic form

V = XTB(t ) a

_I = " aT c(t)

having property P and satisfying equation (7), where

Xo

(8)

Example i

Consider the scalar equation

2
= (2t cos t

where r(to) = ro. The general solution is

_s 2 2r(t) = ro exp in t - sin to

- i) r,

- t +
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thus, we have

which proves that we have exponential stability. Malkin's formula, (7), gives

the Liapunov function

V = r 2 I ¢_
t
2o

where VI = - r

expi2 (sin'_ 2 --sin t2) - 2 (_-t) 1

and V satisfies

r2 _4/2 _ V _ r2 _4/2

e

Thus, both V and V I have property P. Notice however that (2t

neither bounded nor does Roseou's condition holdo That is,

d _,

2
cos t -i) is

R(s, t)

S

= (2 _ cos _ - i) exp sin .[.2 _ sin t

= exp _sin s2 - sin t2 - (s - t)l - i,

where if s = t + I/t , s - t --_ o as t _ _ but R(t + l/t, t) _ o.

However, the following relationship does hold:

t >/ to .

2

exp _-(t- to) _ _ Ir(t)l _ fro I exp [-( t - to) _ ,

This example points out the need for a different condition which must

be placed on the solutions of equation (I). Bhatia calls this condition

"exponential decay."

Definition 4

'The solutions of (i) are said to decay exponentially if there exists positive

constants a, _, b, _ such that every solution _(t), _(to_ = -_o, of (i) satisfies

the inequalities

I'-_o" _ exp _-b (t- to)I _ II_I I ___ II_olI =i exp _-a (t- to, _

for t >/ to."
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°.

In the following five theorems the theory of exponential decay, as applied to

equation (i), is summarized.

Theorem 3, [49]

'_rhe solutions of (I) decay exponentially if and only if there exists a

quadratic form

V = X TB_.(t ) x such that V and V?I both have property P_."

Theorem 4, [49]

'_fhe solutions of (I) decay exponentially if and only if there exists a

positive definite form V of order m with uniformly bounded coefficients such that

#

-V 1 is positive definite and has uniformly bounded coefficients."

Theorem 5_ [49]

"If the solutions of (I) decay exponentially, then

-_ exp (2 Tr_A_ (s)_ ds) dlr _ K,
t

for t _ 0 and for positive constants k, K."

Theorem 6, [49]

"If the solution x = 0 of (I) is exponentially stable and if there is a

positive constant K such that

Tr _A (S)_ ds d_" >/ K,

t

for t >7 O, then the solutions of (1) decay exponentially."

(I0)

(ii)
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Theorem 7_ [4_

"A necessary and sufficient condition for the existence of a quadratic form V

such that V and Vl both have property P is that the solution _ = O of (i) be

exponentially stable and the condition (II) holds".

Bhatia now discusses a more general concept, which he calls "generalized

exponential decay" (g.e.d.).

Definition 5

for t >I to. "

solution x(t)of (i) satisfies the inequalities

Example 2

Consider the scalar equation

r

whose general solution is

=i lI + t
r

f

_(t)°ro_xpt-<_o_(_+_)-_og(_o+_))3"

We have g.e.d, with _= a = _ = b = i and _(t) = log (t + i). But we do not

have exponential stability.

The following theorem gives a necessary and sufficient condition for g.e.d.

'The solutions of (i) are said to exhibit _ if there exists a nondecreasing

function _ (t) possessing a continuous derivative such that _(t) _ _ as

t _ _, and if there exist four positive constants _, as _ , b such that every
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Theorem 8, [49]

'_fhe solutions of (I) exhibit g.e.d, if and only if there exist two quadratic

forms V = _xT B(t) x and W = _xT C(t) x

having property P and a nonnegative continuous function 8(t) such that

J
Oo

('_) d_r = + _ and Vl

t

=- o(t) w."

Example 3

Consider the system

_ = y, y = -x - 2 y.

t

If we choose

2 2
V =x +y + 2 x y ,

t

then V has property P for t

x2 2Thus, let W = ( + y

>I 2, and

2
=- _ -(x2 + y + _ xy)

t t

+ 3

t

x y) and _(t ) = 2/t.

o@

P for t >/ 2, andl 2Jr= + oo.

_t t

Notice that W has property

Therefore the solutions of the system exhibit g.e.d.

Not____e

The g.e.d, implies uniform stability, but it does not in general imply uniform

asymptotic stability since in linear systems uniform asymptotic stability is equivalent

to exponential stability.

The next theorem is concerned with the exponential stability of the solutions

of (I).
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Theorem 9_ [492

'The solution _ = O of (i) is exponentially stable if and only if there exists

a continuous function v(t, _) having the properties:

(i) v(t, 2) = 0 and there are positive constants a and b such that

(ii)

(iii)

a llxll _ v (t, x) .._ b /lxll

v(t, x) is locally lipschitzian in x,

and, where C is a positive constant, we have

= lim sup i I vh-_O+

,!c l;xll

, t >10,

(t + h, _ + h A(t) _) - v (t, _)_

Note

The result in Theorem 9 can be extended to cover the nonlinear system

= f (t _) f (t, 2) = O,

if (i) and (ii) hold for some region //_ /I < R, R a positive constant, and if

in Vl* , A(t) _ is replaced by ! (t, _).

The final theorem is a slight generalization of a theorem due to Perron.

Theorem i0, [4_

"Suppose the origin _ = O of (i) is exponentially stable and the function

_(t, _) in (2) is continuous and satisfies the condition !(t, _) = O ( _ _ H _o

Then the origin of system (2) is exponentially stable." (Bhatia does no___!trequire

boundedness of the elements of A(t).)

RANDOM CONTRIBUTIONS TO STABILITY THEORY

(i) In reference [53], Rosenbrock considers the nonlinear, nonautonomous system

defined by

x - f (x, t), f (0, t) = O.
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In analyzing this system, the above equation was replaced by _ = A _, t) _ , and

conditions on the elements of A were determined to ensure stability. In reference

[54], the method used in _ is applied to the n-th order differential equation

(n) (n - i_

x = f (x, x, ... , x , t_.

This equation is best analyzed if it is replaced by

(n) I)
x + an x (n- + • + a2 x + alx = 0 ,

(n-l)
a i = ai(x, x, ..., x , t_.

Rosenbrock states that if _i, ...,_n are the roots of the equation

_n _n-I+ an + "'" + a2 _ ÷ al = O,

(n-l_
then knowledge of the _i(x, _ .... , x , t) is equivalent to knowledge of the ai.

Consequently conditions on the ai which ensure stability can be replaced by conditions

on _i; and this is what Rosenbrock does. The conditions which are given guarantee

that x = O is uniformly asymptotically stable. Some of the theorems proved by

Rosenbrock make use of Liapunov theory_

In reference [55], Rosenbrock studies the stability properties of the second

order system:

x + a2(x, x, t) _ + al(x , x, t) x = O o

He obtains a slightly stronger result for this system in [54].

(2) In reference [56] , Brayton & Moser use Liapunov theory in their derivation of

stability criteria for nonlinear electrical networks.

(3) In reference [57], Hochstadt considers the second order system

'y + P(t)y _+ q2 y = O,

where P(t) is bounded and non-negative, and q is a real positive constant° When

the "minus sign" is used, he proves that unbounded solutions exist. When the
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"plus sign" is used, he proves that only boundedsolutions exist.

(4) In reference [58], Bebernes and Vinh consider the linear time-varying system

given by:

x ° ÷ x
where x is an n-dimensional vector, and F and G are n x n-matrices defined on

[O, OO). The main result of the paper is as follows:

"if _ (t) is the fundamental matrix solution of x = F(t) x, G(t) is continuous in

EO, OO), and if

then every solution Y(t) of the original system can be expressed as Y(t) = _ (t) c(t),

where _ is defined by

bounded in EO, QO), and the

-i
m

:_ G_c

lim c(t) exists and is unique.

t--_

(5) In reference E592, Struble studies the system defined by:

__ = A x + E f (x, t,_) ,

where _ is an n-vector, A is a constant matrix and E is a scalar parameter. Struble

gives a more detailed picture of the approach of a solution of this system to its

equilibrium solution than that afforded in the usual stability theorems.

(6) In reference E60J, LaSalle and Wonham give a summary of the stability papers

given at the 2nd International Conference on Automatic Control Theory. We give some

of their comments in the following discussion.

(a) Paper No. 103 - "On the Estimation of the Decaying time", H. Lin_(Communist China)

the paper deals with Liapunov - like stability theory for compact manifolds. The

work is not necessarily new°



- 69 -

(b) Paper No. 415 - '_ventual Stability", J. P. LaSalle and R_ J. Roth (U.S.A._.

A Liapunov-like theory has been developed in this paper for the new concept of

"eventual stabilities" and this theory can be applied to certain types of problems

when Liapunov theory is not applicable. The paper also contains a theorem on

the asymptotic stability of noncompact manifolds.

(c) Paper No. 324 "Nonlinear Stability Analysis for Stricted Nonlinearities Using

the Second Method of Liapunov" - Ho Nour Eldin, the author considers nonlinear

control systems and uses Liapunov's second method for stability analysis. The systems

are Lure type containing a single nonlinearity. The paper contains seriums errors and

may no_.__tbe too useful.

(d) Paper Noo 420 'The Use of the technique of Linear Bounds for Applying the Direct

Method of Liapunov to a Class of Non-Linear and time - Varying Systems" - R. A. Nesbit (U.S.A

the author shows how Liapunov's second method may be used to obtain estimates of a class

of functions for which a given controller will operate satisfactorily° This problem

arises when there is uncertainty as to the exact mathematical description of the forces

and dynamics of the system being controlled.

(7) In reference [6_ , Won_ gives two boundedness theorems for the second order system

defined by

+ a(_)fCu)g(u)= O,

where f(u), is integrable and uf(u) > O. The function g(u) is positive continuous.

(8) In reference _2J , Zubov considers the system

= fl(x, Y), # = f2(x, Y),

where the fi are given in a region G of the x y - plane. The fi are real, continuous

and twice differentiable. Zubov assumes that the system has periodic solutions° He

proves many theorems dealing with the Liapunov stability and instability of the

periodic solutions of the system.
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(9) In reference [6_, Matrosov considers the general case of nonsteady motion° In

the obtained criteria two Liapunov functions are used° For the case of nonuniform

asymptotic stability, the requirement of an infinitely small higher limit is removed,

which leads to the modification of theorems of Krasovskii, Zubov, and Reisig. The

application of the method to a nonstationary gyroscopic system with dissipation is

discussed.

(i0) In reference _4], Matrosov studies nonlinear, nonautonomous systems through the

use of several '_iapunov functions". In this connection each V-function can satisfy

less rigid requirements than the one function occurring in the corresponding theorems

of Liapunov's second method. The work is based on Chaplygin's theory of differential

inequalities. The stability theorems obtained with the use of several V-functions

enables the author to construct tests for stability and instability which utilize the

properties of derivatives of the V - functions of higher order than the first. Matroso'

considers tests with derivatives of first and second order.

Matrosov applies this theory to the problem of the stability in the sense of

Liapunov of bodies with variable moss, and to a second order nonlinear, nonautonomous

system of the form:

-t -t 3 2
Xl = (sin t + e ) x I + (sin _ - _ ) x2 - sin2_ (x I + XlX 2 )

-t -t 2 3x 2 = (sin t - _ ) xI + (sin t + _ ) x2 - sin26 (xI x2 + x ).

(Ii) In reference _5] , Chzhan Sy-in considers problems on the stability of

motion over a finite interval of time. He considers the stability of the motion of

the following system during the finite interval [to, TJ :

= P(t_ x ,

where P is a real, bounded, continuous matrix function of time Liapunov functions

are used in all of the stability studies. Also, he considered systems with slowly
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changing coefficients; that is, P(t) = C + e _(t), where C is a constant and

is sufficiently small.

Chzhan Sy-ln considers systems with continuously acting disturbances and

nonlinear systems. He gives particular examples of the various systems.

Other references on finite time stabili_y-are listed in the reference list,

_6] to [6_o ........

(12) In [70], Zubov considered the stability of the null solution in doubtful

cases. He gave several definitions of stability and used a Liapunov approach in

his analysis°

(13) In [7_ , Razumikhin considered a linear tlme-varying system _ = A(t) _, where

is a continuous, bounded function of time. The Liapunov function which he used was

of the form, V =_x T B _ , where B is constant. He also determined the region of

state space in which V is a Liapunov function of the above system. And, he extended

his work to nonlinear systems.

(14) In [72], Aizerman and Gantmakher studied the stability of periodic solutions

of _ = _ _, t) by applying non-Liapunov methods -- they used the variational

equations corresponding to the above system°

(15) In _4_ Livartorskii dealt with the stability of any solution of _ = _(_, t),

where _ is a discontinuous non-periodic function° New criteria for stability was

introduced. Liapunov functions were used to prove the stability theorems.

(16) In [75], Kalinin investigated periodic motions in the ca_e of two zero roots

by using Liapunov methods.

(17) In _, Chetaev generalized the theorem of Poincare' and Liapunov to the general

case of stable motions of conservative systems. He used a Liapunov function given by

a Hermitian form. ,_

(18) In [7_ t_ [8_ , the various authors studied the stability of the equilibrium

positions for discontinuous systems through the use of Liapunov methods.
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(19) In _ , Kuz'min considered the stability of mechanical systems by employing

quadratic forms as Liapunov functions.

(20) In _8_ , Markhashov studied the critical cases of stability of stationary

motions (according to Liapunovj by employing certain simple facts from the theory of

continuous groups of transformations.

(21) In [84] , Klimushchev and Krasovskii proved that under the assumption of uniform

asymptotic stability of the degenerate first approximation system and the asymptotic

stability of a certain auxiliary system, a certain class of systems of differential

equations with a small parameter among its derivative terms was asymptotically stable°

The method of Liapunov was employed.

(22) In [8_ , _ discussed nonuniform stability of time-varying systems from a

function - space approach.

(23) In [86] , Krein studied certain problems dealing with characteristic values and

the Liapunov zones of stability.

(24) In [8_ , Hale and Stokes considered the asymptotic stability of nonautonomous

systems of linear and nonlinear differential equations. The approach used was to

consider the integral representation of these systems and then apply certain differen-

tial inequalities.

(25) In _8_ and _89] , the authors applied Liapunov's second method to certain

physical applications:

linear and nonlinear stability problems in plasma physics and stability problems in

adaptive control systems, respectively.

(26) In [90] , Tomovic' discussed many aspects of stability and sensitivity analysis.

They were:

control systems, types of disturbances, orbital stability, structual stability

(not the topological variety), conditionally stable systems, stability L_ finite
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time, and Liapunov's second method.

(27) In [92] , Jaffe applied Liapunov's second method to the optimal control problem.

In [933 , VoRt defined relative stability and then studied this type o_ stability

in differential systems through the use of Liapunov functions. In _4] , Seifert

studied orbital stability and gave several examples to illustrate his work.

(28) In the references, _5] to [124, we list some of the contributions to bounded-

ness and stability of nonlinear systems given by the Italian Mathematicians during the

years 1951-1961. In _5] and _6], the asymptotic properties of the solutions of

+ _ (x) + x = 0 were studied. In bY, 98, 99] , the bounds and asymptotic

stability of the solutions of _ + f(x) _ + g(x) = 0 were discussed. In _00] ,

the stable limit cycles of

were determined.

of the form

• [x = y - (x + i) (x - + a

= - x y ,

In [i0_ , these results were extended Lo the more general systcm

In

is proved.

= p(y2 )- (x + I_ [ (x- 1) 2 + a ! ,

_ -- X V.
4

[102J , the existence of a unique, stable limit cycle for

+ f (x, x) x + g(x} = 0

In _0_ , the sufficient conditions for the null solution of

_ • 2 3x + ( x + q(x)_ x + x - a x = 0

to be asymptotically stable were derived. The region of asymptotic stability was

also determined. In [I0_ , the existence of stable periodic solution of

x(t) + a b x (t) + x (t - a) - c x 3 (t - a) = 0
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was proved for certain values of a, b, co

In [105], the stability of oscillations in large chambers (hydraulics problems)

was investigated.

In [10w , the uniform boundednessof solutions of

was considered.

+ f (x, _) _ + g(x) = h(t)

In _07, 108, i09] , the boundednessof solutions of

+ _(x) + _)x = f(t)

In _i0] , these results were extended to include the followingwas investigated.

system_

+ _(x, _) + g(x) = f(t).

In [lllJ , the uniqueness and asymptotic stability of solutions of

+ f(t, x, _) x + g(x) = h(t)

for particular f's and g's was proved.

results were obtained for

x+
In [113] , stability conditions were derived for

tl

x + x = & f (t, x, x_ ,

for small _. In [1143 , by approximate methods, the existence of stable persisting

oscillations in an electrical circuit with an iron core and variable capacity was

proved. In [115_, the asymptotic behavior of the solutions of

t _ + _ = sinx

was investigated. In [116, 117, 118J , conditions for the behavior of solutions in

the neighborhood of a given bounded solution of

x = f (t, x, y) ,

= g (t, x, y) ,

were derived. In [1193, the existence of a stable limit cycle for

In [ii_ , upper bound criteria and instability
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x + fl (x, x) + gl(x)

+ f2 (y' 9) + g2 (y)

was investigated. In _120], the stable oscillations of a nonlinear electrical

network were studied. In [121] , the uniform stability of solutions of

"_x = A(t) x + f (t, x)

was studied in comparison with the linear system

x = A(t) x.

In [12_ , Conti studied the same systems and obtained results for boundedness,

stability and continuation of solutions.

The next list of Italian references deals with the asymptotic behavior of solu-

tions in the linear, time-varying case.(We list the reference number and the equation

analyzed by the author.)

[123] : "x + q(t,} x = O.

L._j :

[i ] "'"25 : x + r(t) x

[126, 127] : _ : A(t) x.

[12s,129] : ; :

(29)

O0)

÷ _(t) x = O.

= O.

A(t) x + a(t_.

In [130] , Putman considered the stability intervals of the Hill equations:

W + (a + f(t_) x : 0o

In [131, 132] , Liapunov theory was applied to the construction of limit cycles

and the stability analysis of nonlinear feedback systems, respectively. In [13_ ,

Liapunov theory was applied to the study of modern automatic control theory as applied

to the dynamics and control of nuclear rockets.

(311 In [134, 135] , Levin and Nohel investigated the global asymptotic behavior of

solutions in the case where the system has an integrable perturbation term. An example

considered by the authors was:

+ h(t, x, x) x + f(x) = g(t) ,
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The analysis was based on the second

method of Liapunov. In [136] , Yosh! _ a_a studied the relationships between the

limiting sets of solutions of a perturbed equation and the solutions of an unperturbed

equation through the use of Liapunov methods. He considered the system

_x = F (t, x) + G (t, x) ,

where the integrable perturbation term is G (t, _); he also considered the system

+ f(x)x + g(x) = h(t) ,

where his choice for the Liapunov function was

V (t, x, y)

t

2+ i y + 1

2

In [13_ , Marku_.______sanalyzed the system

I h(t) I

= _HCf) + _G(t,x) ,

i/ogxx+

where G is the perturbation term. His analysis resembled that of the above authors.

(32) In [138] to [142] , the various authors analyzed the second order system

defined by

Xl = fl(Xl' x2) ' fl (0, 0_ = 0 ,

x2 = f2(xl ' x2_ ' f2 (0, 0) = 0 ,

By restricting the Jacobian matrix of fl and f2 in various ways, the authors derived

sufficient conditions for the asymptotic stability in the large of the null solution,

investigated the orbital stability of bounded non-trivial solutions of the system,

considered certain boundedness properties of the solutions. In [14_ ,and the above

results were extended to nonautonomous cases and to higher order systems. Liapunov

theory was used in some of proofs°



(33)

generator described by the following equations:

X = - ax + y ,

= - x - by (i - k w) ,

= b _a (i - w) - ky2_

where a > O, b > O, c and k are constants.
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In [144] , Liapunov theory was used to study the stability of a typical spin

perturbed system was

X =

e

y =

=

and the unperturbed system was

Liapunov functions are used in the analysis.

[147] and [146]

This work is an extension of the work in

In [146], the systems considered were:

x = A x + p (tl ,

_x = A x + p (t_ + f (t, x) ,

F (t, y, w) x + H (t, x, y, w) ,

g(t, x, y,w) ,

G (t, y) + M (t, x, y, w)),

= F (t, y, w)i x ,

= 0 ,

= G (t, y_.

(34) In [145] , the author discussed the stable sets in a perturbed system with

small perturbations, where he assumed that the set was asymptotically stable in the

unperturbed systemo(He defines stability of a set in the paper_) Existence of

periodic solutions were also discussed° The methods used in the analysis were the

asymptotic fixed-point theorem of Browder and Liapunov functions.

(35) In [148] , the asymptotic relationship between two systems of ordinary differential

equations was discussed. If two systems of differential equations are asymptotically

equivalent, a solution of one system tends to a given solution of the other, and vise-

versa. One system can be called perturbed and the other one unperturbed. The author's
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where _ is the perturbation term.

(36) In _4_ , the author considered the boundednessof solutions of
0

x = _f (x, t) ,

through the use of Liapunov functions° He then extended his theory to include

the following system:

x = f ,t) (_x,t) ,

where _ is a perturbation term°

CONTRIBUTIONS TO THE FIELD OF STOCHASTIC STABILITY

Vorovich, _50], was one of the earliest Russian authors who worked on the questio_

of stability in a stochastic system.

Rosenbloom, [15_, was the first to publish a paper in the UoSoA. on the subject

of stability of random systems. He considered first order differential equations

with random coefficients. For stationary Gaussian coefficients, for which the equation

may be integnated, Rosenbloom obtained a criterion for "stability in the mean" based

upon the value of the spectral function at zero frequency.

Erin_er and Samuels, [152, 153, 154, 155_, considered a type of asymptotic stabili

that they referred to as mean square stability, which they applied in the studies of

certain higher order linear differential equations with random coefficients. Their _

stability is defined only in terms of the second moments of the position components

of the state vector. They obtained explicit results for the case of Gaussi_n white-

noise coefficients. Their method of attack is based upon the integral equation associa

with the differential equation. In [156] , Bogdanoff and Kozin discuss and answer

some of the questions which we left unanswered in Eringer's and Samuels' work°

Bertram and Sarachik, _5_, defined stockastic versions of stability in the

phase space of random systems, relative to the three common modes of stochastic con-

vergence; that is, stability in probability)stability in the mean, and almost sure
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stability. They proved sufficient conditions for the stability in the meanfor

general systems based upon the existence of Liapunov functions statisfying appropriate

properties. They obtained Rosenbloomsresults and also obtained explicit results

for higher order linear systems, where the coefficients were restricted to be bounded,

finite-statejrandom coefficients.

Kats and Krasovskii, [158, 159] , considered the problem of stability via second

method of Liapunov. They were interested in the construction of control functions that

would stabilize systems subjected to random noise. Their general stability conditions

and explicit results were of the same nature as those in [157] .

In references _60, 161, 162, 163], the authors were mainly interested in stochastic

control theory. In [16 9 , Krasovskii and Lidskli searched for an optimum Liapunov

function for a stochastic system. This Liapunov function guaranteed that the null

solution of the system was "asymptotically stable in probability". In _63] , Lidskii

is concerned with the study of control systems in which the transition process is

described by means of stochastic linear differential equations. The construction of

the Liapunov functions is accomplished by means similar to Chetaev's method. The system

_s subjected to the action of a random effect of the Markov type, developed during the

control process, and also to disturbances which are random external impulsive disturbances.

The paper considered the establishment of the control action of a control element which

assumes statiBtical stability of a given motion with arbitrary initial deviations.

Liapunov methods aided in this determination.

In [164, 165] , Khas'minskii considered the problem of the stability of a trajectory

of a Markov process, with a different definition of stability. The necessary and

sufficient condition for the stability of such processes is found, and it is an_logous

to the fundamental theorems of Liapunov's second method. The relationship between the

stability of a system of ordinary differential equations and the stability of stochastic

systems obtained by adding to the former a diffusion (random term) term is also investigated
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In higher order cases, a sufficiently large diffusion term will reduce the stability --

this need not be true for order two or less.

In _6_ , Kozin gave a simple, sufficient condition for almost sure stability (in the

Liapunov sense) of a class of linear systems with strictly stationary, metrically

transitive (i.e., satisfying the ergodic property) stochastic process coefficients.

The proof is based upon the fundamental Gronwall-Bellman lemma (see the "boundedness

section" of this report), of differential equation theory, and on the strong law of

large numbers for strictly stationary stochastic processes°

In references _6_ to _72], the work of Cau_hey, Gray, and others is reported.

In [16_ , Cau_hey made note of _he many errors which occurred in reference [15_ o

In _68] , Cau_hey and Dienes showed that the behavior of linear dynamic systems, in

which a single parameter varies as a white-noise process, is an example of a continuous

multidimensional Markoff process. In _6_ , Cau_hey and Gray were concerned with the

stability of the following system:

where _ is an n-vector, A is a constant matrix, and F is a stochastic matrix.

The analysis was performed by a Liapunov approach. Sufficient conditions were derived

for almost sure stability of the null solution. The results were generalized to

include a certain class of non-linear system; and sufficient conditions were obtained

to guarantee the almost sure boundedness of the forced oscillations of linear dynamic

systems with stochastic coefficients. Examples were given for each of the above

problems.

In _17_ , Chelpanov studied stability boundaries for second order random systems.

The correlation times of the random parameters were assumed to be much smaller than

the natural times of the system; thus, the random signals were assumed to be "white".

In LIT_ , Gray derived some sufficient stability conditions for linear systems with

random(non-white) coefficients. Gray used a generalized quadratic Liapunov function
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in his analysis. He also gave several examples°

In [17_ , Kat.____sstudied the problem of\stability in probability of stochastic

systems in the large. A stability criterion based on the use of two Liapunov functions,

due to Chetaev, was given° The Theoremproved for stochastic systems is analogous

to that which was proved for ordinary differential equations by Barashin and Krasovskiio

Kats also considered an example of his theorem.

In [174, 175, 176, 177] , Bershad_ Tuel and Derusso considered the stability of

linear systems with randomly time-varying coefficients_ However, they did not use

Liapunov theory in their proofs.

In [178] , Vrkoc gave an estimate of the probability that the solutions of a

certain differential equation with random perturbations exceed a given bound_

In _79] , Kushner considered some new theorems on the Liapunov theory of

stochastic stability. The results were for the continuous time case, onlyo Many

examples were given to illustrate the several techniques for determining and using

stochastic Liapunov functions to obtain information about random trajectories. Also,

useful bounds on the probability of certain important events were derived.

In [180], Wonham established sufficient conditions for recurrence and positivity

for the diffusion process defined by a stochastic differential equation of Ito's

type° He obtained conditions for non-recurrence and nonpositivity. The conditions

required the existence of functions which closely resembled Liapunov functions° Thus,

he was often able to infer '_eak" stability of a stochastic system by starting with

a Liapunov function for Lagrange stability of a corresponding deterministic system_

Using this technique he discussed linear systems and a nonlinear system of Lure' type.

In [18_ ,Bucy recognized the essential fact that the Liapunov functions in [158]

were nonnegative super martingales, and proved the first Liapunov theorem on almost

sure convergence (with discrete time and global conditions). The theorems in [179]

are based on sharper definitions and local conditions, and provide more useful informa-

tion concerning random trajectories, than in [18_
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OTHER EXTENSIONS OF LIAPUNOV THEORY

Partial Differential Equations. (Infinite De_ree of Freedom Systems)

In the reference books, _8_ and _8_, Zubov and Hah_____.nnboth discussed the

stability of partial differential equations using a Liapunov function approach°

In [18_ , Movchan considered the problem of stability of the "plane state"

of a thin plate of infinite length)simply supported along two edges and subjected

to the action of constant forces in its plane° The direct method of Liapunov

was employed, thus causing the author to introduce an auxiliary metric space in

order to construct in it the corresponding functionals needed in the analysis°

In _85 , 186] , Morchan considered other systems with an infinite number

of degrees of freedom° In _85] , the system was a dynamical system where deformations,

temperatures and stresses were also considered in the stability problem. In [186],

be considered a more general problem. For the processes considered he gave many

definitions of stability; and for each one he proved a theorem of the direct

H

method of Liapunov on the properties of the functionals which are necessary and

sufficient for the existence of the particular type of stability or instability

being considered. In some cases these functionals can also be used to prove

uniqueness of solutions for certain partial differential equations.

In _8_ , Kostandian considered the stability of the solution of the non-

linear equation of heat conduction in the space CL2 He employed the ideas

contained in Liapunov's second method and arrived at sufficient conditions for

asymptotic stability of the equilibrium solution. He mentioned that in

references _88] and_89J other methods of stability analysis were presented,

as well as extensive reference lists°

In _9_, Rakhmatullina investigated the stability of a somewhat more general

problem than that studied _n [18_ He used the methods which were first consider-

ed in ,_!9_ to study the following equation_



where

- 83 -

_u =IL u + f (t, x, u)I,

Lu _ div _ _(_)T raf_[___ + I b(_)T grad ui+

+ c(_) u.

is an elliptic operator. One method used was that of "differential!nequalities"

(see _ Hthe boundedness section of the report_ which are related to the Liapunov methods.

In [192], Slobodkin considered the stability of some simple systems from the

linear theory of elasticity. He used the direct method of Liapunov to establish

his results. The Liapunov funtional used in the analysis was related to the total

energy of the system being considered.

In _93, 194, 195, 1963 , Lakshmikantham considered the problem of stability of

solutions of parabolic equations and certain functional equations by employing the

direct method of Liapunov. He obtained a number of results, in a unified way, by

using these techniques. For instance, he found the stability of the solutions, and

investigated certain examples. He also indicated that !_!apu_ov - ]i_e vector

functions were useful in some cases.

Differential - Difference Equations and Functional Equations

In reference _8_ , Hah___.n_nconsidered some of the results from the stability

studies of systems with a time-iQgo

In reference _97J , Krasovskii considered the general definitions and theorems

of Liapunov's second method for equations with time-lags. The systems considered in

his book were linear systems with time-lag, nonlinear systems, integrodifferential

equations with time lags, and systems with persistent disturbances. He also gave

methods to construct the Liapunov functionals for special systems.

In reference _9_ , Bellman and Cooke considered the field of differential-

difference equations in great detail. Some of the topics covered which are
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pertinent to this report are: small perturbation theory, definitions of various

types of stability, existence theorems, uniqueness theorems, asymptotic behavior

of solutions, stability theorems, time-varying, time-lag systems, Liapunov

functions and functionals, and a reference list, which will no____tbe repeated

here. In reference _9_ , Bellman and Danskin gave an earlier survey of the

field of differential-difference equations, the survey being interested mainly

in stability.

In [200, 20 8 , Razumikhin considered the stability of systems with time-

lag by employing the direct method of Liapunovo In [20_ , he obtained his

results by considering the first approximations for the systems. Also, he

applied his theory to the following practical example, from _02]:

_(t) + alx(t) + a2x(t) + a3x(t-_ ) = O,

which describes the transient processes in a certain automatic control system.

In [20 9 , Shimanov proved that the known theorems of Liapunov and Chetaev

concerning stability can be extended to systems with retardation. Also, he

gave a criterion of instability in the first approximation of the motion of

systems with retardation. The equations of perturbed motion which he studied

a_e given by

= i (t t) ,

where _ (O, t) _ O. These equations are called "equations with after-effects"

In [204], Shimanov gave a practical method for solving the problem of the

undisturbed motion of a system with time-lag for the critical case when one of

the roots is zero. Liapunov theory was used in the analysis. The author consider-

ed two particular second-order nonlinear, time-lag systems as examples for his

procedure.

In [20_, Popov and Halanay considered an application of Popov's method

(see "Control Section" of this report) to the problem of stability of some systems
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with lagging arguments. The form of the equations studied are as follows:

_- -- c T x ,

where A, B, 2, c are constants and _ and _- are scalars°

this equation was studied in [206J.

A special case of

In [209],Wan_ and Bandy have shown that tlme-delayed variables can enter

into distributed - parameter processes due to the presence of both internal and

external delayed action energy sources° The dynamic behavior of such processes

were described by a system of partial differentlal-difference equations. The

authors paid particular attention to the class of equations which admitted

product solutions so that their time-dependent equations were reducible to a

denumerable infinity of ordinary dlfferential-difference equations° Motivated

by the theory developed in [207] and [20_ , the authors gave an extended version

of Liapunov's stability theory for such systems. Its application was illustrated

by the study of a one-dimensional diffusion process with non-linear delayed-action

sources. In [2103, Wan_ considered the asymptotic stability of the equilibrium

states of a nonlinear diffusion system with time delays. He also gave a physical

interpretation of his problem; namely, an automatically controlled furnace with

time-delays, used for heat-treatment of certain materials°

In [21_ , Hal____eeconsidered the existence of periodic and almost periodic

solutions of linear nonhomogeneous functional-dlfferential equations under a

hypothesis of uniform asymptotic stability for homogeneous systems,[as defined

in his paper. He unified and generalized the results which others had obtained

for differential-difference equations by a systematic use of a special Liapunov

functional. He considered, as applications, two specific types of nonlinear

systems. Also, Hal_____egave an extensive bibliography: concerning the above

problems.
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In [213 , Hal_____eediscussedlinear functional-differential equations with

constant coefficients. The topics discussed were= eigenspaces, use of the

adjoint equation, perturbation theorems, and the geometric theory of

differential-difference equations.

In [213] , Hal___.._epointed out that Krasovskii proved, in _9_, that the

stability theorems of Liapunov and their converses can be extended to

differential equations with delayed arguments if the equations are discussed

in a space of continuous functions C, over a finite interval. These theorems

hold if the Liapunov functions are also defined over this space C. These

yield necessary and sufficient conditions for stability and thus are not too

useful for applications. For this reason, Hale determined conditions, by

meansof Liapunov functionals, which were only sufficient for stability. This

took the form of generalizations of the work of LaSalle,[214], for ordinary

differential equations. Hal____._econsidered as an example a problem due to Levin

and Nohel, discussed earlier in this section.

In _I_, Hal._____econtinued the work which he discussed in _0_ and_16J

to a more general type of equation, namely, a functional-differential equation.

Liapunov functionals were used throughout the discussion.

In _i_ , Hal_.___eecontinued his discussion on the use of Liapunov functionals

to investigate asymptotic stability of a certain class of functional-differential

equations.

In _i_ , Seifert gave stability conditions on the bounded solutions of

systems with "almost periodic" time dependence which will guarantee separation,

defined in the paper, of one such solution with respect to the others. Then, he

obtained, in terms of such stability conditions, an existence theorem for almost

periodic solutions of almost periodic systems.
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In _i_ , Seifert used Liapunov functions to derive sufficient conditions

for uniform stability of almost-periodlc solutions of almost-periodlc systems

of differential equations.

In [220]and[22_, Stokes and Jones used fixed-point theorems to study the

problems of stability of nonlinear systems and functional-differential systems,

respectively.

In [2223, Taam obtained conditions for certain nonlinear differential

equations in a Banach space to possess a unique almost periodic solution which

is positively asymptotically stable and negatively unstable.

In_23_, Jones studied the existence of periodic motions in Bamach Spaces

and thH_applications to functional-differential equations. He employed the

asymptotic fixed point theorems in his work; and he also considered many

interesting physical systems as examples of his theory.

In _224], Stokes proved that if the associated linear variational functional-

differential equation has only one non-trivial one-parameter family of periodic solu_=

tions, and all the remaining solutions tend to zero, than the limit cycle of the

autonomous functional-differential equation is orbitally asymptotically stable;

with asymptotic phase.

,In E22 , Hale and Perello took another step in the geometric direction to

extend results known for ordinary differential equations to nonlinear functional-

differential equations of the finite lag type. They used Liapunov functionals

in some of their work.

In [226J , Hal___eeproved sufficient conditions for stability and instability

of autonomous functional-differential equations. Liapunov functionals were used°

Many practical examples were considered_

stability of a circulating fuel nuclear reactor, Volterra's integrodifferential

/
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equation, viscoelasticity problems, and many others°

C, Topological Dynamics and Generalized

Dynamic Systems

Under this "item" we will just list some of the references in the field

which either define what a generalized dynamic system really is, or which make

use of Liapunov functions in the study of stability in generalized dynamic

systems. The references are numbered from [227_ to [239]. Also, in

references [182] and [183], we can find discussions on the stability of

invariant sets of certain dynamic systems.
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The next several references, [95J to 02U , form a partial llst of the

contributions to stability theory due to the Italian Mathematicians. The journals

are listed but the titles of the papers are not: given. In the text of this section,
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